首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HumanNa+-K+-ATPase11,21, and 31heterodimers were expressed individually in yeast, and ouabainbinding and ATP hydrolysis were measured in membrane fractions. Theouabain equilibrium dissociation constant was 13-17 nM for11 and 31at 37°C and 32 nM for 21, indicatingthat the human -subunit isoforms have a similar high affinity forcardiac glycosides. K0.5 values for antagonism of ouabain binding by K+ were ranked in order as follows:2 (6.3 ± 2.4 mM) > 3(1.6 ± 0.5 mM)  1 (0.9 ± 0.6 mM),and K0.5 values for Na+ antagonismof ouabain binding to all heterodimers were 9.5-13.8 mM. Themolecular turnover for ATP hydrolysis by11 (6,652 min1) was abouttwice as high as that by 31 (3,145 min1). These properties of the human heterodimersexpressed in yeast are in good agreement with properties of the humanNa+-K+-ATPase expressed in Xenopusoocytes (G Crambert, U Hasler, AT Beggah, C Yu, NN Modyanov, J-DHorisberger, L Lelievie, and K Geering. J Biol Chem275: 1976-1986, 2000). In contrast to Na+ pumpsexpressed in Xenopus oocytes, the21 complex in yeast membranes wassignificantly less stable than 11 or31, resulting in a lower functionalexpression level. The 21 complex was also more easily denatured by SDS than was the11 or the31 complex.

  相似文献   

2.
Investigation of the role ofindividual protein kinase C (PKC) isozymes in the regulation ofNa+ channels has been largely limited by the lack ofisozyme-selective modulators. Here we used a novel peptide-specificactivator (V1-7) of PKC and other peptide isozyme-specificinhibitors in addition to the general PKC activator phorbol12-myristate 13-acetate (PMA) to dissect the role of individual PKCs inthe regulation of the human cardiac Na+ channel hH1,heterologously expressed in Xenopus oocytes. Peptides wereinjected individually or in combination into the oocyte. Whole cellNa+ current (INa) was recorded usingtwo-electrode voltage clamp. V1-7 (100 nM) and PMA (100 nM)inhibited INa by 31 ± 5% and 44 ± 8% (at 20 mV), respectively. These effects were not seen with thescrambled peptide for V1-7 (100 nM) or the PMA analog4-phorbol 12,13-didecanoate (100 nM). However, V1-7-and PMA-induced INa inhibition was abolished byV1-2, a peptide-specific antagonist of PKC. Furthermore,PMA-induced INa inhibition was not altered by100 nM peptide-specific inhibitors for -, -, -, or PKC. PMAand V1-7 induced translocation of PKC from soluble toparticulate fraction in Xenopus oocytes. This translocationwas antagonized by V1-2. In native rat ventricular myocytes,PMA and V1-7 also inhibited INa; thisinhibition was antagonized by V1-2. In conclusion, the resultsprovide evidence for selective regulation of cardiac Na+channels by PKC isozyme.

  相似文献   

3.
Ischemia causes renal tubular cellloss through apoptosis; however, the mechanisms of this processremain unclear. Using the renal tubular epithelial cell lineLLC-PK1, we developed a model of simulated ischemia(SI) to investigate the role of p38 MAPK (mitogen-activated proteinkinase) in renal cell tumor necrosis factor- (TNF-) mRNAproduction, protein bioactivity, and apoptosis. Resultsdemonstrate that 60 min of SI induced maximal TNF- mRNA productionand bioactivity. Furthermore, 60 min of ischemia induced renaltubular cell apoptosis at all substrate replacement time pointsexamined, with peak apoptotic cell death occurring after either 24 or 48 h. p38 MAPK inhibition abolished TNF- mRNA production andTNF- bioactivity, and both p38 MAPK inhibition and TNF- neutralization (anti-porcine TNF- antibody) preventedapoptosis after 60 min of SI. These results constitute theinitial demonstration that 1) renal tubular cells produceTNF- mRNA and biologically active TNF- and undergoapoptosis in response to SI, and 2) p38 MAPKmediates renal tubular cell TNF- production and TNF--dependent apoptosis after SI.

  相似文献   

4.
Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase   总被引:2,自引:0,他引:2  
Ouabain binding toNa+/K+-ATPase activates Src/epidermal growthfactor receptor (EGFR) to initiate multiple signal pathways thatregulate growth. In cardiac myocytes and the intact heart, the earlyouabain-induced pathways that cause rapid activations of ERK1/2 alsoregulate intracellular Ca2+ concentration([Ca2+]i) and contractility. The goal of thisstudy was to explore the role of caveolae in these early signalingevents. Subunits of Na+/K+-ATPase were detectedby immunoblot analysis in caveolae isolated from cardiac myocytes,cardiac ventricles, kidney cell lines, and kidney outer medulla byestablished detergent-free procedures. Isolated rat cardiac caveolaecontained Src, EGFR, ERK1/2, and 20-30% of cellular contents of1- and 2-isoforms ofNa+/K+-ATPase, along with nearly all ofcellular caveolin-3. Immunofluorescence microscopy of adult cardiacmyocytes showed the presence of caveolin-3 and -isoforms inperipheral sarcolemma and T tubules and suggested their partialcolocalization. Exposure of contracting isolated rat hearts to apositive inotropic dose of ouabain and analysis of isolated cardiaccaveolae showed that ouabain caused 1) no change in totalcaveolar ERK1/2, but a two- to threefold increase in caveolarphosphorylated/activated ERK1/2; 2) no change in caveolar 1-isoform and caveolin-3; and 3) 50-60%increases in caveolar Src and 2-isoform. These findings,in conjunction with previous observations, show that components of thepathways that link Na+/K+-ATPase to ERK1/2 and[Ca2+]i are organized within cardiac caveolaemicrodomains. They also suggest that ouabain-induced recruitments ofSrc and 2-isoform to caveolae are involved in themanifestation of the positive inotropic effect of ouabain.

  相似文献   

5.
The phorbol ester phorbol12-myristate 13-acetate (PMA) inhibits Cl secretion(short-circuit current, Isc) and decreasesbarrier function (transepithelial resistance, TER) in T84 epithelia. To elucidate the role of specific protein kinase C (PKC) isoenzymes inthis response, we compared PMA with two non-phorbol activators of PKC(bryostatin-1 and carbachol) and utilized three PKC inhibitors (Gö-6850, Gö-6976, and rottlerin) with different isozymeselectivity profiles. PMA sequentially inhibited cAMP-stimulatedIsc and decreased TER, as measured byvoltage-current clamp. By subcellular fractionation and Western blot,PMA (100 nM) induced sequential membrane translocation of the novelPKC followed by the conventional PKC and activated both isozymesby in vitro kinase assay. PKC was activated by PMA but did nottranslocate. By immunofluorescence, PKC redistributed to thebasolateral domain in response to PMA, whereas PKC moved apically.Inhibition of Isc by PMA was prevented by theconventional and novel PKC inhibitor Gö-6850 (5 µM) but not theconventional isoform inhibitor Gö-6976 (5 µM) or the PKCinhibitor rottlerin (10 µM), implicating PKC in inhibition ofCl secretion. In contrast, both Gö-6976 andGö-6850 prevented the decline of TER, suggesting involvement ofPKC. Bryostatin-1 (100 nM) translocated PKC and PKC andinhibited cAMP-elicited Isc. However, unlikePMA, bryostatin-1 downregulated PKC protein, and the decrease in TERwas only transient. Carbachol (100 µM) translocated only PKC andinhibited Isc with no effect on TER. Gö-6850 but not Gö-6976 or rottlerin blocked bryostatin-1and carbachol inhibition of Isc. We concludethat basolateral translocation of PKC inhibits Clsecretion, while apical translocation of PKC decreases TER. Thesedata suggest that epithelial transport and barrier function can bemodulated by distinct PKC isoforms.

  相似文献   

6.
The role of the Na+ pump2-subunit in Ca2+ signaling was examined inprimary cultured astrocytes from wild-type(2+/+ = WT) mouse fetuses and thosewith a null mutation in one [2+/ = heterozygote (Het)] or both [2/ = knockout (KO)] 2 genes. Na+ pump catalytic() subunit expression was measured by immunoblot; cytosol[Na+] ([Na+]cyt) and[Ca2+] ([Ca2+]cyt) weremeasured with sodium-binding benzofuran isophthalate and fura 2 byusing digital imaging. Astrocytes express Na+ pumpswith both 1- (80% of total ) and2- (20% of total ) subunits. Het astrocytesexpress 50% of normal 2; those from KO express none.Expression of 1 is normal in both Het and KO cells.Resting [Na+]cyt = 6.5 mM in WT, 6.8 mMin Het (P > 0.05 vs. WT), and 8.0 mM in KO cells(P < 0.001); 500 nM ouabain (inhibits only2) equalized [Na+]cyt at 8 mMin all three cell types. Resting[Ca2+]cyt = 132 nM in WT, 162 nM in Het,and 196 nM in KO cells (both P < 0.001 vs. WT).Cyclopiazonic acid (CPA), which inhibits endoplasmic reticulum (ER)Ca2+ pumps and unloads the ER, induces transient (inCa2+-free media) or sustained (in Ca2+-repletemedia) elevation of [Ca2+]cyt. TheseCa2+ responses to 10 µM CPA were augmented in Het as wellas KO cells. When CPA was applied in Ca2+-free media, thereintroduction of Ca2+ induced significantly largertransient rises in [Ca2+]cyt (due toCa2+ entry through store-operated channels) in Het and KOcells than in WT cells. These results correlate with published evidencethat 2 Na+ pumps andNa+/Ca2+ exchangers are confined to plasmamembrane microdomains that overlie the ER. The data suggest thatselective reduction of 2 Na+ pump activitycan elevate local [Na+] and, viaNa+/Ca2+ exchange, [Ca2+] in thetiny volume of cytosol between the plasma membrane and ER. This, inturn, augments adjacent ER Ca2+ stores and therebyamplifies Ca2+ signaling without elevating bulk[Na+]cyt.

  相似文献   

7.
We reported previously that inhibition ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K+concentration ([K+]o)-induced swelling andintracellular Cl accumulation in rat cortical astrocytes.In this report, we extended our study by using cortical astrocytes fromNKCC1-deficient (NKCC1/) mice. NKCC1 protein andactivity were absent in NKCC1/ astrocytes.[K+]o of 75 mM increased NKCC1 activityapproximately fourfold in NKCC1+/+ cells (P < 0.05) but had no effect in NKCC1/ astrocytes.Intracellular Cl was increased by 70% inNKCC1+/+ astrocytes under 75 mM[K+]o (P < 0.05) butremained unchanged in NKCC1/ astrocytes. Baselineintracellular Na+ concentration([Na+]i) in NKCC1+/+ astrocyteswas 19.0 ± 0.5 mM, compared with 16.9 ± 0.3 mM[Na+]i in NKCC1/ astrocytes(P < 0.05). Relative cell volume ofNKCC1+/+ astrocytes increased by 13 ± 2% in 75 mM[K+]o, compared with a value of 1.0 ± 0.5% in NKCC1/ astrocytes (P < 0.05).Regulatory volume increase after hypertonic shrinkage was completelyimpaired in NKCC1/ astrocytes.High-[K+]o-induced 14C-labeledD-aspartate release was reduced by ~30% inNKCC1/ astrocytes. Our study suggests that stimulationof NKCC1 is required for high-[K+]o-inducedswelling, which contributes to glutamate release from astrocytes underhigh [K+]o.

  相似文献   

8.
The aim of thisstudy was to identify fibrogenic mediators stimulatingactivation, proliferation, and/or matrix synthesis of rat pancreaticstellate cells (PSC). PSC were isolated from the pancreas of normalWistar rats and from rats with cerulein pancreatitis. Cell activationwas demonstrated by immunofluorescence microscopy of smooth muscle-actin (SMA) and real-time quantitative RT-PCR of SMA, fibronectin,and transforming growth factor (TGF)-1. Proliferationwas measured by bromodeoxyuridine incorporation. Matrix synthesis wasdemonstrated on the protein and mRNA level. Within a few days inprimary culture, PSC changed their phenotype from fat-storing toSMA-positive myofibroblast-like cells expressing platelet-derivedgrowth factor (PDGF) - and PDGF -receptors. TGF-1and tumor necrosis factor (TNF)- accelerated the change in thecells' phenotype. Addition of 50 ng/ml PDGF and 5 ng/ml basicfibroblast growth factor (bFGF) to cultured PSC significantly stimulated cell proliferation (4.37 ± 0.49- and 2.96 ± 0.39-fold of control). Fibronectin synthesis calculated on the basis of DNA was stimulated by 5 ng/ml bFGF (3.44 ± 1.13-fold), 5 ng/ml TGF-1 (2.46 ± 0.89-fold), 20 ng/ml PDGF (2.27 ± 0.68-fold), and 50 ng/ml TGF- (1.87 ± 0.19-fold). As shownby RT-PCR, PSC express predominantly the splice variant EIII-A offibronectin. Immunofluorescence microscopy and Northern blot confirmedthat in particular bFGF and TGF-1 stimulated thesynthesis of fibronectin and collagens type I and III. In conclusion,our data demonstrate that 1) TGF-1 andTNF- accelerate the change in the cell phenotype, 2) PDGF represents the most effective mitogen, and 3) bFGF,TGF-1, PDGF, and, to a lesser extent, TGF- stimulateextracellular matrix synthesis of cultured rat PSC.

  相似文献   

9.
Tumor necrosisfactor (TNF)- has a biphasic effect on heart contractility andstimulates phospholipase A2 (PLA2) incardiomyocytes. Because arachidonic acid (AA) exerts a dual effect onintracellular Ca2+ concentration([Ca2+]i) transients, we investigated thepossible role of AA as a mediator of TNF- on[Ca2+]i transients and contraction withelectrically stimulated adult rat cardiac myocytes. At a lowconcentration (10 ng/ml) TNF- produced a 40% increase in theamplitude of both [Ca2+]i transients andcontraction within 40 min. At a high concentration (50 ng/ml) TNF-evoked a biphasic effect comprising an initial positive effect peakingat 5 min, followed by a sustained negative effect leading to50-40% decreases in [Ca2+]i transientsand contraction after 30 min. Both the positive and negative effects ofTNF- were reproduced by AA and blocked by arachidonyltrifluoromethylketone (AACOCF3), an inhibitor of cytosolic PLA2.Lipoxygenase and cyclooxygenase inhibitors reproduced the high-doseeffects of TNF- and AA. The negative effects of TNF- and AA werealso reproduced by sphingosine and were abrogated by the ceramidaseinhibitor n-oleoylethanolamine. These results point out thekey role of the cytosolic PLA2/AA pathway in mediating thecontractile effects of TNF-.

  相似文献   

10.
During maturation of oocytes,Cl conductance (GCl) oscillatesand intracellular pH (pHi) increases. ElevatingpHi permits the protein synthesis essential to maturation.To examine whether changes in GCl andpHi are coupled, the Cl channel ClC-0 washeterologously expressed. Overexpressing ClC-0 elevatespHi, decreases intracellular Cl concentration([Cl]i), and reduces volume. Acuteacidification with butyrate does not activate acid extrusion inClC-0-expressing or control oocytes. The ClC-0-induced pHichange increases after overnight incubation at extracellular pH 8.5 butis unaltered after incubation at extracellular pH 6.5. Membranedepolarization did not change pHi. In contrast, hyperpolarization elevates pHi. Thus neither membranedepolarization nor acute activation of acid extrusion accounts for theClC-0-dependent alkalinization. Overnight incubation in lowextracellular Cl concentration increases pHiand decreases [Cl]i in control and ClC-0expressing oocytes, with the effect greater in the latter. Incubationin hypotonic, low extracellular Cl solutions preventedpHi elevation, although the decrease in[Cl]i persisted. Taken together, ourobservations suggest that KCl loss leads to oocyte shrinkage, whichtransiently activates acid extrusion. In conclusion, expressing ClC-0in oocytes increases pHi and decreases[Cl]i. These parameters are coupled viashrinkage activation of proton extrusion. Normal, cyclical changes ofoocyte GCl may exert an effect onpHi via shrinkage, thus inducing meiotic maturation.

  相似文献   

11.
We investigated theeffects of epidermal growth factor (EGF) on activeNa+ absorption by alveolarepithelium. Rat alveolar epithelial cells (AEC) were isolated andcultivated in serum-free medium on tissue culture-treated polycarbonatefilters. mRNA for rat epithelial Na+ channel (rENaC) -, -,and -subunits and Na+ pump1- and1-subunits were detected inday 4 monolayers by Northern analysisand were unchanged in abundance in day5 monolayers in the absence of EGF. Monolayerscultivated in the presence of EGF (20 ng/ml) for 24 h fromday 4 to day5 showed an increase in both1 and1Na+ pump subunit mRNA but noincrease in rENaC subunit mRNA. EGF-treated monolayers showed parallelincreases in Na+ pump1- and1-subunit protein by immunoblotrelative to untreated monolayers. Fixed AEC monolayers demonstratedpredominantly membrane-associated immunofluorescent labeling withanti-Na+ pump1- and1-subunit antibodies, withincreased intensity of cell labeling for both subunits seen at 24 hfollowing exposure to EGF. These changes inNa+ pump mRNA and protein precededa delayed (>12 h) increase in short-current circuit (measure ofactive transepithelial Na+transport) across monolayers treated with EGF compared with untreated monolayers. We conclude that EGF increases activeNa+ resorption across AECmonolayers primarily via direct effects onNa+ pump subunit mRNA expressionand protein synthesis, leading to increased numbers of functionalNa+ pumps in the basolateralmembranes.

  相似文献   

12.
We screened rat brain cDNA libraries and used 5'rapid amplification of cDNA ends to clone two electrogenicNa+-HCO3 cotransporter(NBC) isoforms from rat brain (rb1NBC and rb2NBC). At the amino acidlevel, one clone (rb1NBC) is 96% identical to human pancreas NBC. Theother clone (rb2NBC) is identical to rb1NBC except for 61 uniqueCOOH-terminal amino acids, the result of a 97-bp deletion near the3' end of the open-reading frame. Using RT-PCR, we confirmed thatmRNA from rat brain contains this 97-bp deletion. Furthermore, wegenerated rabbit polyclonal antibodies that distinguish between theunique COOH-termini of rb1NBC (rb1NBC) and rb2NBC (rb2NBC).rb1NBC labels an ~130-kDa protein predominantly from kidney, andrb2NBC labels an ~130-kDa protein predominantly from brain.rb2NBC labels a protein that is more highly expressed in corticalneurons than astrocytes cultured from rat brain; rb1NBC exhibits theopposite pattern. In expression studies, applying 1.5%CO2/10 mM HCO3 toXenopus oocytes injected with rb2NBC cRNA causes 1)pHi to recover from the initial CO2-inducedacidification and 2) the cell to hyperpolarize. Subsequently,removing external Na+ reverses the pHi increaseand elicits a rapid depolarization. In the presence of 450 µM DIDS,removing external Na+ has no effect on pHi andelicits a small hyperpolarization. The rate of the pHidecrease elicited by removing Na+ is insensitive toremoving external Cl. Thus rb2NBC is aDIDS-sensitive, electrogenic NBC that is predominantly expressed inbrain of at least rat.

  相似文献   

13.
To determine whether homocysteine(Hcy)-mediated activation of endocardial endothelial (EE) cells isameliorated by peroxisome proliferator-activated receptor (PPAR), weisolated EE cells from mouse endocardium. Matrix metalloproteinase(MMP) activity and intercellular adhesion molecule (ICAM)-1 in EE cellswere measured in the presence and absence of Hcy, and ciprofibrate (CF;PPAR- agonist) or 15-deoxy-12,14-prostaglandinJ2 (PGJ2; PPAR- agonist) by zymography andWestern blot analyses, respectively. Results suggest that Hcy-mediated MMP activation and ICAM-1 expression are ameliorated by CF and PGJ2. To test the hypothesis that Hcy competes with otherligands for binding to PPAR and -, we prepared cardiac nuclearextracts. Extracts were loaded onto an Hcy-cellulose affinity column.Bound proteins were eluted with CF and PGJ2. To determineconformational changes in PPAR upon binding to Hcy, we measured PPARfluorescence at 334 nm. Dose-dependent increase in PPAR fluorescencedemonstrated a primary binding affinity of 0.32 ± 0.06 µM. There wasdose-dependent quenching of PPAR fluorescence byfluorescamine-homocysteine (F-Hcy). PPAR- fluorescence quenching wasabrogated by the addition of CF but not by PGJ2. PPAR-fluorescence quenching was abrogated by the addition ofPGJ2 but not by CF. These results suggest that Hcy competeswith CF and PGJ2 for binding to PPAR- and -,respectively, indicating a role of PPAR in amelioration of Hcy-mediatedEE dysfunction.

  相似文献   

14.
We investigated the regulation ofATP-sensitive K+ (KATP) currents in murinecolonic myocytes with patch-clamp techniques. Pinacidil(105 M) activated inward currents in the presence of highexternal K+ (90 mM) at a holding potential of 80 mV indialyzed cells. Glibenclamide (105 M) suppressedpinacidil-activated current. Phorbol 12,13-dibutyrate (PDBu; 2 × 107 M) inhibited pinacidil-activated current.4--Phorbol ester (5 × 107 M), an inactive formof PDBu, had no effect on pinacidil-activated current. In cell-attachedpatches, the open probability of KATP channels wasincreased by pinacidil, and PDBu suppressed openings ofKATP channels. When cells were pretreated withchelerythrine (106 M) or calphostin C (107M), inhibition of the pinacidil-activated whole cell currents by PDBuwas significantly reduced. In cells studied with the perforated patchtechnique, PDBu also inhibited pinacidil-activated current, and thisinhibition was reduced by chelerythrine (106 M).Acetylcholine (ACh; 105 M) inhibited pinacidil-activatedcurrents, and preincubation of cells with calphostin C(107 M) decreased the effect of ACh. Cells dialyzed withprotein kinase C -isoform (PKC) antibody had normal responses topinacidil, but the effects of PDBu and ACh on KATP wereblocked in these cells. Immunofluorescence and Western blots showedexpression of PKC in intact muscles and isolated smooth muscle cellsof the murine proximal colon. These data suggest that PKC regulates KATP in colonic muscle cells and that the effects of ACh onKATP are largely mediated by PKC. PKC appears to be themajor isozyme that regulates KATP in murine colonic myocytes.

  相似文献   

15.
Tumor necrosis factor- (TNF-), oneof the major inflammatory cytokines, is known to influence endothelialcell migration. In this study, we demonstrate that exposure of calfpulmonary artery endothelial cells to TNF- caused an increase in theformation of membrane protrusions and cell migration. Fluorescencemicroscopy revealed an increase in v3focal contacts but a decrease in 51 focalcontacts in TNF--treated cells. In addition, both cell-surface andtotal cellular expression of v3-integrinsincreased significantly, whereas the expression of51-integrins was unaltered. Only focalcontacts containing v3- but not51-integrins were present in membraneprotrusions of cells at the migration front. In contrast, robust focalcontacts containing 51-integrins were present in cells behind the migration front. A blocking antibody tov3, but not a blocking antibody to5-integrins, significantly inhibited TNF--inducedcell migration. These results indicate that in response to TNF-,endothelial cells may increase the activation and ligation ofv3 while decreasing the activation andligation of 51-integrins to facilitatecell migration, a process essential for vascular wound healing and angiogenesis.

  相似文献   

16.
Protein kinase C (PKC) plays animportant role in activating store-operated Ca2+ channels(SOC) in human mesangial cells (MC). The present study was performed todetermine the specific isoform(s) of conventional PKC involved inactivating SOC in MC. Fura 2 fluorescence ratiometry showed that thethapsigargin-induced Ca2+ entry (equivalent to SOC) wassignificantly inhibited by 1 µM Gö-6976 (a specific PKC andI inhibitor) and PKC antisense treatment (2.5 nM for 24-48h). However, LY-379196 (PKC inhibitor) and2,2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanoldimethyl ether(HBDDE; PKC and  inhibitor) failed to affect thapsigargin-evoked activation of SOC. Single-channel analysis in the cell-attached configuration revealed that Gö-6976 and PKC antisensesignificantly depressed thapsigargin-induced activation of SOC.However, LY-379196 and HBDDE did not affect the SOC responses. Ininside-out patches, application of purified PKC or I, but notII or , significantly rescued SOC from postexcision rundown.Western blot analysis revealed that thapsigargin evoked a decrease incytosolic expression with a corresponding increase in membraneexpression of PKC and . However, the translocation from cytosolto membranes was not detected for PKCI or II. These resultssuggest that PKC participates in the intracellular signaling pathwayfor activating SOC upon release of intracellular stores ofCa2+.

  相似文献   

17.
This work was undertaken toobtain a direct measure of the stoichiometry ofNa+-independent K+-Cl cotransport(KCC), with rabbit red blood cells as a model system. To determinewhether 86Rb+ can be used quantitatively as atracer for KCC, 86Rb+ and K+effluxes were measured in parallel after activation of KCC with N-ethylmaleimide (NEM). The rate constant for NEM-stimulatedK+ efflux into isosmotic NaCl was smaller than that for86Rb+ by a factor of 0.68 ± 0.11 (SD,n = 5). This correction factor was used in all otherexperiments to calculate the K+ efflux from the measured86Rb+ efflux. To minimize interference from theanion exchanger, extracellular Cl was replaced withSO, and4,4'-diisothiocyanothiocyanatodihydrostilbene-2,2'-disulfonic acid was present in the flux media. The membrane potential was clampednear 0 mV with the protonophore 2,4-dinitrophenol. The Clefflux at 25°C under these conditions is ~100,000-fold smaller thanthe uninhibited Cl/Cl exchange flux and isstimulated ~2-fold by NEM. The NEM-stimulated 36Cl flux is inhibited by okadaic acid andcalyculin A, as expected for KCC. The ratio of the NEM-stimulatedK+ to Cl efflux is 1.12 ± 0.26 (SD,n = 5). We conclude thatK+-Cl cotransport in rabbit red blood cellshas a stoichiometry of 1:1.

  相似文献   

18.
First published September 5, 2001;10.1152/ ajpcell.00256.2001.The expression and function of theendogenous inhibitor of cAMP-dependent protein kinase (PKI) inendothelial cells are unknown. In this study, overexpression of rabbitmuscle PKI gene into endothelial cells inhibited the cAMP-mediatedincrease and exacerbated thrombin-induced decrease in endothelialbarrier function. We investigated PKI expression in human pulmonaryartery (HPAECs), foreskin microvessel (HMECs), and brain microvesselendothelial cells (HBMECs). RT-PCR using specific primers for humanPKI, human PKI, and mouse PKI sequences detectedPKI and PKI mRNA in all three cell types. Sequencing and BLASTanalysis indicated that forward and reverse DNA strands for PKI andPKI were of >96% identity with database sequences. RNaseprotection assays showed protection of the 542 nucleotides in HBMEC andHPAEC PKI mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKImRNA. Western blot analysis indicated that PKI protein was detectedin all three cell types, whereas PKI was found in HBMECs. Insummary, endothelial cells from three different vascular beds expressPKI and PKI, which may be physiologically important inendothelial barrier function.

  相似文献   

19.
First publishedSeptember 5, 2001; 10.1152/ajpcell. 00048.2001.Intestinalstrictures are frequent in Crohn's disease but not ulcerative colitis.We investigated the expression of transforming growth factor (TGF)-isoforms by isolated and cultured primary human intestinalmyofibroblasts and the responsiveness of these cells and intestinalepithelial cells to TGF- isoforms. Normal intestinal myofibroblastsreleased predominantly TGF-3 and ulcerative colitismyofibroblasts expressed both TGF-1 andTGF-3, whereas in myofibroblast cultures from fibroticCrohn's disease tissue, there was significantly lower expression ofTGF-3 but enhanced release of TGF-2.These distinctive patterns of TGF- isoform release were sustainedthrough several myofibroblast passages. Proliferation of Crohn'sdisease myofibroblasts was significantly greater than that ofmyofibroblasts derived from normal and ulcerative colitis tissue. Incontrast to cells from normal and ulcerative colitis tissue,neutralization of the three TGF- isoforms did not affect theproliferation of Crohn's disease intestinal myofibroblasts. Studies onthe effect of recombinant TGF- isoforms on epithelial restitutionand proliferation suggest that TGF-2 may be the least effective of the three isoforms in intestinal wound repair. In conclusion, the enhanced release of TGF-2 but reducedexpression of TGF-3 by Crohn's disease intestinalmyofibroblasts, together with their enhanced proliferative capacity,may lead to the development of intestinal strictures.

  相似文献   

20.
The amiloride-sensitiveepithelial sodium channel (ENaC) plays a critical role in fluid andelectrolyte homeostasis and is composed of three homologous subunits:, , and . Only heteromultimeric channels made of ENaCare efficiently expressed at the cell surface, resulting in maximallyamiloride-sensitive currents. To study the relative importance ofvarious regions of the - and -subunits for the expression offunctional ENaC channels at the cell surface, we constructedhemagglutinin (HA)-tagged --chimeric subunits composed of -and -subunit regions and coexpressed them with HA-tagged - and-subunits in Xenopus laevis oocytes. The whole cellamiloride-sensitive sodium current (Iami) andsurface expression of channels were assessed in parallel using thetwo-electrode voltage-clamp technique and a chemiluminescence assay.Because coexpression of ENaC resulted in largerIami and surface expression compared withcoexpression of ENaC, we hypothesized that the -subunit ismore important for ENaC trafficking than the -subunit. Usingchimeras, we demonstrated that channel activity is largely preservedwhen the highly conserved second cysteine rich domains (CRD2) of the- and -subunits are exchanged. In contrast, exchanging the wholeextracellular loops of the - and the -subunits largely reducedENaC currents and ENaC expression in the membrane. This indicates thatthere is limited interchangeability between molecular regions of thetwo subunits. Interestingly, our chimera studies demonstrated that theintracellular termini and the two transmembrane domains of ENaC aremore important for the expression of functional channels at the cellsurface than the corresponding regions of ENaC.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号