首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mammalian bladder epithelium elaborates, as a terminal differentiation product, a specialized plasma membrane called asymmetric unit membrane (AUM) which is believed to play a role in strengthening and stabilizing the urothelial apical surface through its interactions with an underlying cytoskeleton. Previous studies indicate that the outer leaflet of AUM is composed of crystalline patches of 12- nm protein particles, and that bovine AUMs contain three major proteins: the 27- to 28-kD uroplakin I, the 15-kD uroplakin II and the 47-kD uroplakin III. As a step towards elucidating the AUM structure and function, we have cloned the cDNAs of bovine uroplakin I (UPI). Our results established the existence of two isoforms of bovine uroplakin I: a 27-kD uroplakin Ia and a 28-kD uroplakin Ib. These two glycoproteins are closely related with 39% identity in their amino acid sequences. Hydropathy plot revealed that both have four potential transmembrane domains (TMDs) with connecting loops of similar length. Proteolytic digestion of UPIa inserted in vitro into microsomal vesicles suggested that its two main hydrophilic loops are exposed to the luminal space, possibly involved in interacting with the luminal domains of other uroplakins to form the 12-nm protein particles. The larger loop connecting TMD3 and TMD4 of both UPIa and UPIb contains six highly conserved cysteine residues; at least one centrally located cysteine doublet in UPIa is involved in forming intramolecular disulfide bridges. The sequences of UPIa and UPIb (the latter is almost identical to a hypothetical, TGF beta-inducible, TI-1 protein of mink lung epithelial cells) are homologous to members of a recently described family all possessing four transmembrane domains (the "4TM family"); members of this family include many important leukocyte differentiation markers such as CD9, CD37, CD53, and CD63. The tissue- specific and differentiation-dependent expression as well as the naturally occurring crystalline state of uroplakin I molecules make them uniquely suitable, as prototype members of the 4TM family, for studying the structure and function of these integral membrane proteins.  相似文献   

2.
The apical surface of mammalian urothelium is covered by 16-nm protein particles packed hexagonally to form 2D crystals of asymmetric unit membranes (AUM) that contribute to the remarkable permeability barrier function of the urinary bladder. We have shown previously that bovine AUMs contain four major integral membrane proteins, i.e., uroplakins Ia, Ib, II, and IIIa, and that UPIa and Ib (both tetraspanins) form heterodimers with UPII and IIIa, respectively. Using a panel of antibodies recognizing different conformational states of uroplakins, we demonstrate that the UPIa-dependent, furin-mediated cleavage of the prosequence of UPII leads to global conformational changes in mature UPII and that UPIb also induces conformational changes in its partner UPIIIa. We further demonstrate that tetraspanins CD9, CD81, and CD82 can stabilize their partner protein CD4. These results indicate that tetraspanin uroplakins, and some other tetraspanin proteins, can induce conformational changes leading to the ER-exit, stabilization, and cell surface expression of their associated, single-transmembrane-domained partner proteins and thus can function as "maturation-facilitators." We propose a model of AUM assembly in which conformational changes in integral membrane proteins induced by uroplakin interactions, differentiation-dependent glycosylation, and the removal of the prosequence of UPII play roles in regulating the assembly of uroplakins to form AUM.  相似文献   

3.
The luminal surface of mammalian urothelium is covered with numerous plaques (also known as the asymmetric unit membrane or AUM) composed of semi-crystalline, hexagonal arrays of 12-nm protein particles. Despite the presumed importance of these plaques in stabilizing the urothelial surface during bladder distention, relatively little is known about their protein composition. Using a mouse mAb, AE31, we have identified a 27-kD protein that is urothelium-specific and is differentially expressed in superficial umbrella cells. This protein (pI approximately 5.8) partitions into the detergent phase during Triton X-114 phase separation. Pulse-chase experiments using cultured bovine urothelial cells showed that this protein is synthesized as a 32-kD precursor that is processed through a 30-kD intermediate, to the mature 27-kD form. In cytoplasmic vesicles containing immature AUM, the AE31 epitope is detected in patches on the cytoplasmic side, but in mature, apical AUM it is detected exclusively on the luminal side. This suggests an unusual translocation of the AE31 epitope during AUM maturation; more data are required, however, to substantiate this interpretation. Immunoaffinity purification of the 27-kD protein results in the copurification in approximately molar ratio of a 15-kD protein, as well as a small and variable amount of a 47-kD protein. Immunoblotting data indicate that these three proteins are immunologically distinguishable. This copurified 15-kD protein is relative basic (pI approximately 8.0). Like the 27-kD protein, it is urothelium-specific and is present mainly in the umbrella cells. Together, our data indicate that a 27-kD protein is urothelial plaque-associated (uroplakin I). Based on complex formation data, we provisionally name the 15-kD protein uroplakin II; additional data will be required to determine whether this and the 47-kD protein are integral parts of AUM. The identification of these AUM-associated and -related proteins, plus the availability of a culture system capable of synthesizing and processing some of these molecules, offer new opportunities for studying the detailed structure, assembly, and function of asymmetrical unit membrane.  相似文献   

4.
Formation of asymmetric unit membrane during urothelial differentiation   总被引:4,自引:0,他引:4  
Mammalian urothelium undergoes unique membrane specialization during terminal differentiation making numerous rigid-looking membrane plaques (0.3–0.5 m diameter) that cover the apical cell surface. The outer leaflet of these membrane plaques is almost twice as thick as the inner leaflet hence the name asymmetric unit membrane (AUM). Ultrastructural studies established that the outer leaflet of AUM is composed of 16 nm particles forming two dimensional crystals, and that each particle forms a twisted ribbon structure. We showed recently that highly purified bovine AUMs contain four major integral membrane proteins: uroplakins Ia (27 kD), Ib (28 kD), II (15 kD) and III (47 kD). Studies of the protease sensitivity of the different subdomains of uroplakins and other considerations suggest that UPIa and UPIb have 4 transmembrane domains, while UPII and UPIII have only one transmembrane domain. Chemical Crosslinking studies showed that UPIa and UPIb, which share 39% amino acid sequence, are topologically adjacent to UPII and UPIII, respectively, thus raising the possibility that there exist two biochemically distinct AUM particles, i.e., those containing UPIa/UPII vs. UPIb/UPIII. Bovine urothelial cells grown in the presence of 3T3 feeder cells undergo clonal growth forming stratified colonies capable of synthesizing and processing all known uroplakins. Transgenic mouse studies showed that a 3.6 kb 5-flanking sequence of mouse uroplakin II gene can drive the expression of bacterial LacZ gene to express in the urothelium. Further studies on the biosynthesis, assembly and targeting of uroplakins will offer unique opportunities for better understanding the structure and function of AUM as well as the biology of mammalian urothelium.  相似文献   

5.
The apical surface of mammalian bladder urothelium is covered by large (500-1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin-Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.  相似文献   

6.
Chromosomal localization of uroplakin genes of cattle and mice   总被引:2,自引:0,他引:2  
The asymmetric unit membrane (AUM) of the apical surface of mammalian urinary bladder epithelium contains several major integral membrane proteins, including uroplakins IA and IB (both 27 kDa), II (15 kDa), and III (47 kDa). These proteins are synthesized only in terminally differentiated bladder epithelial cells. They are encoded by separate genes and, except for uroplakins IA and IB, appear to be unrelated in their amino acid sequences. The genes encoding these uroplakins were mapped to chromosomes of cattle through their segregation in a panel of bovine x rodent somatic cell hybrids. Genes for uroplakins IA, IB, and II were mapped to bovine (BTA) Chromosomes (Chrs) 18 (UPK1A), 1 (UPK1B), and 15 (UPK2), respectively. Two bovine genomic DNA sequences reactive with a uroplakin III cDNA probe were identified and mapped to BTA 6 (UPK3A) and 5 (UPK3B). We have also mapped genes for uroplakins 1A and II in mice, to the proximal regions of mouse Chr 7 (Upk1a) and 9 (Upk2), respectively, by analyzing the inheritance of restriction fragment length variants in recombinant inbred mouse strains. These assignments are consistent with linkage relationships known to be conserved between cattle and mice. The mouse genes for uroplakins IB and III were not mapped because the mouse genomic DNA fragments reactive with each probe were invariant among the inbred strains tested. Although the stoichiometry of AUM proteins is nearly constant, the fact that the uroplakin genes are unlinked indicates that their expression must be independently regulated. Our results also suggest likely positions for two human uroplakin genes and should facilitate further analysis of their possible involvement in disease.  相似文献   

7.
Urothelial surface is covered by numerous plaques (consisting of asymmetric unit membranes or AUM) that are interconnected by ordinary looking hinge membranes. We describe an improved method for purifying bovine urothelial plaques using 2% sarkosyl and 25 mM NaOH to remove contaminating membrane and peripheral proteins selectively. Highly purified plaques interconnected by intact hinge areas were obtained, indicating that the hinges are as detergent-insoluble as the plaques. These plaque/hinge preparations contained uroplakins, an as yet uncharacterized 18-kDa plaque-associated protein, plus an 85-kDa glycoprotein that is known to be hinge-associated in situ. Examination of the isolated, in vitro-resealed bovine AUM vesicles by quick-freeze deep-etch showed that each AUM particle consists of a 16-nm, luminally exposed "head" anchored to the lipid bilayer via a 9-mm transmembranous "tail", and that an AUM plaque can break forming several smaller plaques separated by newly formed particle-free, hinge-like areas. These data lend support to our recently proposed three-dimensional model of mouse urothelial plaques. In addition, our findings suggest that urothelial plaques are dynamic structures that can rearrange giving rise to new plaques with intervening hinges; that the entire urothelial apical surface (both plaque and hinge areas) is highly specialized; and that these two membrane domains may be equally important in fulfilling some of the urothelial functions.  相似文献   

8.
Uropathogenic E. coli (UPEC) expressing type 1 pili underlie most urinary tract infections (UTIs). UPEC adherence to the bladder urothelium induces a rapid apoptosis and exfoliation of terminally differentiated urothelial cells, a critical event in pathogenesis. Of the four major uroplakin proteins that are densely expressed on superficial urothelial cells, UPIa serves as the receptor for type 1-piliated UPEC, but the contributions of uroplakins to cell death are not known. We examined the role of differentiation and uroplakin expression on UPEC-induced cell death. Utilizing in vitro models of urothelial differentiation, we demonstrated induction of tissue-specific differentiation markers including uroplakins. UPEC-induced urothelial cell death was shown to increase with enhanced differentiation but required expression of uroplakin III: infection with an adenovirus encoding uroplakin III significantly increased cell death, while siRNA directed against uroplakin III abolished UPEC-induced cell death. In a murine model of UTI where superficial urothelial cells were selectively eroded to expose less differentiated cells, urothelial apoptosis was reduced, indicating a requirement for differentiation in UPEC-induced apoptosis in vivo. These data suggest that induction of uroplakin III during urothelial differentiation sensitizes cells to UPEC-induced death. Thus, uroplakin III plays a pivotal role in UTI pathogenesis.  相似文献   

9.
The apical surface of the terminally differentiated mouse bladder urothelium is largely covered by urothelial plaques, consisting of hexagonally packed 16-nm uroplakin particles. These plaques are delivered to the cell surface by fusiform vesicles (FVs) that are the most abundant cytoplasmic organelles. We have analyzed the functional involvement of several proteins in the apical delivery and endocytic degradation of uroplakin proteins. Although FVs have an acidified lumen and Rab27b, which localizes to these organelles, is known to be involved in the targeting of lysosome-related organelles (LROs), FVs are CD63 negative and are therefore not typical LROs. Vps33a is a Sec1-related protein that plays a role in vesicular transport to the lysosomal compartment. A point mutation in mouse Vps33a (Buff mouse) causes albinism and bleeding (Hermansky-Pudlak syndrome) because of abnormalities in the trafficking of melanosomes and platelets. These Buff mice showed a novel phenotype observed in urothelial umbrella cells, where the uroplakin-delivering FVs were almost completely replaced by Rab27b-negative multivesicular bodies (MVBs) involved in uroplakin degradation. MVB accumulation leads to an increase in the amounts of uroplakins, Lysosomal-associated membrane protein (LAMP)-1/2, and the activities of β-hexosaminidase and β-glucocerebrosidase. These results suggest that FVs can be regarded as specialized secretory granules that deliver crystalline arrays of uroplakins to the cell surface, and that the Vps33a mutation interferes with the fusion of MVBs with mature lysosomes thus blocking uroplakin degradation.  相似文献   

10.
The binding of uropathogenic Escherichia coli to the urothelial surface is a critical initial event for establishing urinary tract infection, because it prevents the bacteria from being removed by micturition and it triggers bacterial invasion as well as host cell defense. This binding is mediated by the FimH adhesin located at the tip of the bacterial type 1-fimbrium and its urothelial receptor, uroplakin Ia (UPIa). To localize the UPIa receptor on the 16 nm particles that form two-dimensional crystals of asymmetric unit membrane (AUM) covering >90 % of the apical urothelial surface, we constructed a 15 A resolution 3-D model of the mouse 16 nm AUM particle by negative staining and electron crystallography. Similar to previous lower-resolution models of bovine and pig AUM particles, the mouse 16 nm AUM particle consists of six inner and six outer domains that are interconnected to form a twisted ribbon-like structure. Treatment of urothelial plaques with 0.02-0.1 % (v/v) Triton X-100 allowed the stain to penetrate into the membrane, revealing parts of the uroplakin transmembrane moiety with an overall diameter of 14 nm, which was much bigger than the 11 nm value determined earlier by quick-freeze deep-etch. Atomic force microscopy of native, unfixed mouse and bovine urothelial plaques confirmed the overall structure of the luminal 16 nm AUM particle that was raised by 6.5 nm above the luminal membrane surface and, in addition, revealed a circular, 0.5 nm high, cytoplasmic protrusion of approximately 14 nm diameter. Finally, a difference map calculated from the mouse urothelial plaque images collected in the presence and absence of recombinant bacterial FimH/FimC complex revealed the selective binding of FimH to the six inner domains of the 16 nm AUM particle. These results indicate that the 16 nm AUM particle is anchored by a approximately 14 nm diameter transmembrane stalk, and suggest that bacterial binding to UPIa that resides within the six inner domains of the 16 nm AUM particle may preferentially trigger transmembrane signaling involved in bacterial invasion and host cell defense.  相似文献   

11.
Urothelial plaques consist of four major uroplakins (Ia, Ib, II, and III) that form two-dimensional crystals covering the apical surface of urothelium, and provide unique opportunities for studying membrane protein assembly. Here, we describe a novel 35-kD urothelial plaque-associated glycoprotein that is closely related to uroplakin III: they have a similar overall type 1 transmembrane topology; their amino acid sequences are 34% identical; they share an extracellular juxtamembrane stretch of 19 amino acids; their exit from the ER requires their forming a heterodimer with uroplakin Ib, but not with any other uroplakins; and UPIII-knockout leads to p35 up-regulation, possibly as a compensatory mechanism. Interestingly, p35 contains a stretch of 80 amino acid residues homologous to a hypothetical human DNA mismatch repair enzyme-related protein. Human p35 gene is mapped to chromosome 7q11.23 near the telomeric duplicated region of Williams-Beuren syndrome, a developmental disorder affecting multiple organs including the urinary tract. These results indicate that p35 (uroplakin IIIb) is a urothelial differentiation product structurally and functionally related to uroplakin III, and that p35-UPIb interaction in the ER is an important early step in urothelial plaque assembly.  相似文献   

12.
The composition of the apical plasma membrane of bladder superficial urothelial cells is dramatically modified during cell differentiation, which is accompanied by the change in the dynamics of endocytosis. We studied the expression of urothelial differentiation-related proteins uroplakins and consequently the apical plasma membrane molecular composition in relation to the membrane-bound and fluid-phase endocytosis in bladder superficial urothelial cells. By using primary urothelial cultures in the environment without mechanical stimuli, we studied the constitutive endocytosis. Four new findings emerge from our study. First, in highly differentiated superficial urothelial cells with strong uroplakin expression, the endocytosis of fluid-phase endocytotic markers was 43% lower and the endocytosis of membrane-bound markers was 86% lower compared to partially differentiated cells with weak uroplakin expression. Second, superficial urothelial cells have 5–15-times lower endocytotic activity than MDCK cells. Third, in superficial urothelial cells the membrane-bound markers are delivered to lysosomes, while fluid-phase markers are seen only in early endocytotic compartments, suggesting their kiss-and-run recycling. Finally, we provide the first evidence that in highly differentiated cells the uroplakin-positive membrane regions are excluded from internalization, suggesting that uroplakins hinder endocytosis from the apical plasma membrane in superficial urothelial cells and thus maintain optimal permeability barrier function.  相似文献   

13.
Genome level information coupled with phylogenetic analysis of specific genes and gene families allow for a better understanding of the structure and function of their protein products. In this study, we examine the mammalian uroplakins (UPs) Ia and Ib, members of the tetraspanin superfamily, that interact with uroplakins UPII and UPIIIa/IIIb, respectively, using a phylogenetic approach of these genes from whole genome sequences. These proteins interact to form urothelial plaques that play a central role in the permeability barrier function of the apical urothelial surface of the urinary bladder. Since these plaques are found exclusively in mammalian urothelium, it is enigmatic that UP-like genomic sequences were recently found in lower vertebrates without a typical urothelium. We have cloned full-length UP-related cDNAs from frog (Xenopus laevis), chicken (Gallus gallus), and zebrafish (Danio rerio), and combined these data with sequence information from their orthologs in all the available fully sequenced and annotated animal genomes. Phylogenetic analyses of all the available uroplakin sequences, and an understanding of their distribution in several animal taxa, suggest that: (i) the UPIa/UPIb and UPII/UPIII genes evolved by gene duplication in the common ancestor of vertebrates; (ii) uroplakins can be lost in different combinations in vertebrate lineages; and (iii) there is a strong co-evolutionary relationship between UPIa and UPIb and their partners UPII and UPIIIa/IIIb, respectively. The co-evolution of the tetraspanin UPs and their associated proteins may fine-tune the structure and function of uroplakin complexes enabling them to perform diverse species- and tissue-specific functions. The structure and function of uroplakins, which are also expressed in Xenopus kidney, oocytes and fat body, are much more versatile than hitherto appreciated.  相似文献   

14.
Urothelium synthesizes a group of integral membrane proteins called uroplakins, which form two-dimensional crystals (urothelial plaques) covering >90% of the apical urothelial surface. We show that the ablation of the mouse uroplakin III (UPIII) gene leads to overexpression, defective glycosylation, and abnormal targeting of uroplakin Ib, the presumed partner of UPIII. The UPIII-depleted urothelium features small plaques, becomes leaky, and has enlarged ureteral orifices resulting in the back flow of urine, hydronephrosis, and altered renal function indicators. Thus, UPIII is an integral subunit of the urothelial plaque and contributes to the permeability barrier function of the urothelium, and UPIII deficiency can lead to global anomalies in the urinary tract. The ablation of a single urothelial-specific gene can therefore cause primary vesicoureteral reflux (VUR), a hereditary disease affecting approximately 1% of pregnancies and representing a leading cause of renal failure in infants. The fact that VUR caused by UPIII deletion seems distinct from that caused by the deletion of angiotensin receptor II gene suggests the existence of VUR subtypes. Mutations in multiple gene, including some that are urothelial specific, may therefore cause different subtypes of primary reflux. Studies of VUR in animal models caused by well-defined genetic defects should lead to improved molecular classification, prenatal diagnosis, and therapy of this important hereditary problem.  相似文献   

15.
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.  相似文献   

16.
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.  相似文献   

17.
The apical surface of mouse urothelium is covered by two-dimensional crystals (plaques) of uroplakin (UP) particles. To study uroplakin function, we ablated the mouse UPII gene. A comparison of the phenotypes of UPII- and UPIII-deficient mice yielded new insights into the mechanism of plaque formation and some fundamental features of urothelial differentiation. Although UPIII knockout yielded small plaques, UPII knockout abolished plaque formation, indicating that both uroplakin heterodimers (UPIa/II and UPIb/III or IIIb) are required for plaque assembly. Both knockouts had elevated UPIb gene expression, suggesting that this is a general response to defective plaque assembly. Both knockouts also had small superficial cells, suggesting that continued fusion of uroplakin-delivering vesicles with the apical surface may contribute to umbrella cell enlargement. Both knockouts experienced vesicoureteral reflux, hydronephrosis, renal dysfunction, and, in the offspring of some breeding pairs, renal failure and neonatal death. These results highlight the functional importance of uroplakins and establish uroplakin defects as a possible cause of major urinary tract anomalies and death.  相似文献   

18.
Urothelial plaques are specialized membrane domains in urothelial superficial (umbrella) cells, composed of highly ordered uroplakin particles. We investigated membrane compartments involved in the formation of urothelial plaques in mouse umbrella cells. The Golgi apparatus did not contain uroplakins organized into plaques. In the post-Golgi region, three distinct membrane compartments containing uroplakins were characterized: i) Small rounded vesicles, located close to the Golgi apparatus, were labelled weakly with anti-uroplakin antibodies and they possessed no plaques; we termed them "uroplakin-positive transporting vesicles" (UPTVs). ii) Spherical-to-flattened vesicles, termed "immature fusiform vesicles" (iFVs), were uroplakin-positive in their central regions and contained small urothelial plaques. iii) Flattened "mature fusiform vesicles" (mFVs) contained large plaques, which were densely labelled with anti-uroplakin antibodies. Endoytotic marker horseradish peroxidase was not found in these post-Golgi compartments. We propose a detailed model of de novo urothelial plaque formation in post-Golgi compartments: UPTVs carrying individual 16-nm particles detach from the Golgi apparatus and subsequently fuse into iFV. Concentration of 16-nm particles into plaques and removal of uroplakin-negative membranes takes place in iFVs. With additional fusions and buddings, iFVs mature into mFVs, each carrying two urothelial plaques toward the apical surface of the umbrella cell.  相似文献   

19.
A sodium saccharin (NaSac) diet was used to induce cell damage and regeneration in the urothelium of the male rat urinary bladder. Foci of terminally differentiated superficial cell exfoliation were detected after 5 weeks and their number increased after 10 and 15 weeks of the diet. At the sites of superficial cell loss, regenerative simple hyperplasia developed. Within 5 weeks of NaSac removal, regeneration re-established normal differentiated urothelium. In order to follow urothelial differentiation during regeneration we studied the expression of uroplakins and cytokeratins by means of immunocytochemistry and immunohistochemistry, respectively. Normal urothelium was characterised by terminally differentiated superficial cells which expressed uroplakins in their luminal plasma membrane and cytokeratin 20 (CK20) in the cytoplasm. Basal and intermediate cells were CK20 negative and cytokeratin 17 (CK17) positive. In hyperplastic urothelium all cells synthesised CK17, but not CK20. Differentiation of the superficial layer was reflected in three successive cell types: cells with microvilli, cells with rounded microridges and those with a rigid-looking plasma membrane on the luminal surface. The cells with microvilli did not stain with anti-uroplakin antibody. When the synthesis of uroplakins was detected rounded microridges were formed. With the elevated expression of uroplakins the luminal plasma membrane becomes rigid-looking which is characteristic of asymmetric unit membrane of terminally differentiated cells. During differentiation, syn-thesis of CK17 ceased in superficial cells while the synthesis of CK20 started. These results indicate that during urothelial regeneration after NaSac treatment, specific superficial cell types develop in which the switch to uroplakin synthesis and transition from CK17 to CK20 synthesis are crucial events for terminal differentiation. Accepted: 19 August 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号