首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experiments presented here were designed to examine the contribution of the extracellular signal-regulated mitogen-activated protein kinases (ERKs) to the tyrosine phosphorylation of the focal adhesion proteins p125(Fak), p130(Cas), and paxillin induced by G protein-coupled receptors (GPCRs) and tyrosine kinase receptors in Swiss 3T3 cells. Stimulation of these cells with bombesin, lysophosphatidic acid (LPA), endothelin, and platelet-derived growth factor (PDGF) led to a marked increase in the tyrosine phosphorylation of these focal adhesion proteins and in ERK activation. Exposure of the cells to two structurally unrelated mitogen-activated protein kinase or ERK kinase (MEK) inhibitors, PD98059 and U0126, completely abrogated ERK activation but did not prevent tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin. Furthermore, different dose-response relationships were obtained for tyrosine phosphorylation of focal adhesion proteins and for ERK activation in response to PDGF. Putative upstream events in the activation of focal adhesion proteins including actin cytoskeletal reorganization and myosin light chain (MLC) phosphorylation were also not prevented by inhibition of ERK activation. Thus, our results demonstrate that the activation of the ERK pathway is not necessary for the increase of the tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin induced by either GPCRs or tyrosine kinase receptors in Swiss 3T3 cells.  相似文献   

2.
Neuropeptide-stimulated tyrosine phosphorylation of specific components in Swiss 3T3 cells was investigated using monoclonal antibodies directed against the src transformation-associated substrates p125 focal adhesion kinase (FAK), a novel type of cytosolic tyrosine kinase, and p130. Treatment of Swiss 3T3 cells with the mitogenic peptides bombesin, vasopressin, and endothelin caused a striking increase in the tyrosine phosphorylation of p125FAK, as judged either by anti-phosphotyrosine (anti-Tyr(P)) Western blots of anti-p125FAK immunoprecipitates, or by anti-p125FAK immunoblots of anti-Tyr(P) immunoprecipitates. Bombesin-stimulated tyrosine phosphorylation of p125FAK was detectable within seconds and concentration-dependent (half-maximum effect of 0.3 nM). Neuropeptides also stimulated the tyrosine phosphorylation of a second component of M(r) 130,000, previously identified as the major p130 phosphotyrosyl protein in src-transformed cells. Bombesin stimulated p130 tyrosine phosphorylation with kinetics and concentration dependence similar to those observed for p125FAK. This is the first report to identify substrates for neuropeptide-stimulated tyrosine phosphorylation; the finding that one of these substrates is a tyrosine kinase suggests the existence of a novel signal transduction pathway in the action of mitogenic neuropeptides.  相似文献   

3.
Tyrosine phosphorylation of the nonreceptor tyrosine kinase p125 focal adhesion kinase (FAK) and the adapter protein paxillin is rapidly increased by multiple agonists, including bombesin (BOM) and lysophosphatidic acid (LPA), through heptahelical G protein-coupled receptors (GPCRs). The pathways involved remain incompletely understood. The experiments presented here were designed to test the role of epidermal growth factor receptor (EGFR) transactivation in the rapid increase of tyrosine phosphorylation of FAK and paxillin induced by GPCR agonists. Our results show that treatment with the selective EGFR tyrosine kinase inhibitor AG 1478, at concentrations that completely blocked the increase in tyrosine phosphorylation of these proteins induced by EGF, did not affect the stimulation of tyrosine phosphorylation of either FAK or paxillin induced by multiple GPCR agonists including LPA, BOM, vasopressin, bradykinin, and endothelin. Similar results were obtained when Swiss 3T3 cells were treated with another highly specific inhibitor of the EGF receptor kinase activity, PD-158780. Collectively, our results clearly dissociate EGFR transactivation from the tyrosine phosphorylation of FAK and paxillin induced by multiple GPCR agonists.  相似文献   

4.
A J Ridley  A Hall 《The EMBO journal》1994,13(11):2600-2610
Lysophosphatidic acid (LPA) and bombesin rapidly stimulate the formation of focal adhesions and actin stress fibres in serum-starved Swiss 3T3 fibroblasts, a process regulated by the small GTP binding protein Rho. To investigate further the signalling pathways leading to these responses, we have tested the roles of three intracellular signals known to be induced by LPA: activation of protein kinase C (PK-C), Ca2+ mobilization and decreased cAMP levels. Neither PK-C activation nor increased [Ca2+]i, alone or in combination, induced stress fibre formation, and in fact activators of PK-C inhibited this response to LPA and bombesin. The G(i)-mediated decrease in cAMP was not required for the response to LPA, and increased cAMP levels did not prevent stress fibre formation. In contrast, the tyrosine kinase inhibitor genistein inhibited the formation of stress fibres induced by both extracellular factors and microinjected Rho protein. Genistein also inhibited the Rho-dependent clustering of phosphotyrosine-containing proteins at focal adhesions, and the increased tyrosine phosphorylation of several proteins including pp125FAK, induced by LPA and bombesin. This suggests a model where Rho-induced activation of a tyrosine kinase is required for the formation of stress fibres.  相似文献   

5.
p42/microtubule-associated protein kinase (p42mapk) is activated by tyrosine and threonine phosphorylation, and its regulatory phosphorylation is likely to be important in signalling pathways involved in growth control, secretion, and differentiation. Here we show that treatment of quiescent 3T3 cells with diverse agonists results in the appearance of an activity capable of causing the in vitro phosphorylation of p42mapk on the regulatory tyrosine and to a lesser extent on the regulatory threonine, resulting in enzymatic activation of the p42mapk. This p42mapk-activating activity is capable of phosphorylating a kinase-defective p42mapk mutant, thus confirming its activity as a kinase.  相似文献   

6.
Lysophosphatidic acid (LPA) mediates diverse biological responses, including cell migration, through the activation of G-protein-coupled receptors. Recently, we have shown that LPA stimulates p21-activated kinase (PAK) that is critical for focal adhesion kinase (FAK) phosphorylation and cell motility. Here, we provide the direct evidence that p85 beta-PIX is required for cell motility of NIH-3T3 cells by LPA through FAK and p38 MAP kinase phosphorylations. LPA induced p85 beta-PIX binding to FAK in NIH-3T3 cells that was inhibited by pretreatment of the cells with phosphoinositide 3-kinase inhibitor, LY294002. Furthermore, the similar inhibition of the complex formation was also observed, when the cells were transfected with either p85 beta-PIX mutant that cannot bind GIT or dominant negative mutants of Rac1 (N17Rac1) and PAK (PAK-PID). Transfection of the cells with specific p85 beta-PIX siRNA led to drastic inhibition of LPA-induced FAK phosphorylation, peripheral redistribution of p85 beta-PIX with FAK and GIT1, and cell motility. p85 beta-PIX was also required for p38 MAP kinase phosphorylation induced by LPA. Finally, dominant negative mutant of Rho (N19Rho)-transfected cells did not affect PAK activation, while the cells stably transfected with p85 beta-PIX siRNA or N17Rac1 showed the reduction of LPA-induced PAK activation. Taken together, the present data suggest that p85 beta-PIX, located downstream of Rac1, is a key regulator for the activations of FAK or p38 MAP kinase and plays a pivotal role in focal complex formation and cell motility induced by LPA.  相似文献   

7.
Lysophosphatidic acid (LPA), one of the naturally occurring phospholipids, stimulates cell motility through the activation of Rho family members, but the signaling mechanisms remain to be elucidated. In the present study, we investigated the roles of p21-activated kinase 1 (PAK1) on LPA-induced focal adhesion kinase (FAK) phosphorylation and cell motility. Treatment of human melanoma cells A2058 with LPA increased phosphorylation and activation of PAK1, which was blocked by treatment with pertussis toxin and by inhibition of phosphoinositide 3-kinase (PI3K) with an inhibitor LY294002 or by overexpression of catalytically inactive mutant of PI3Kgamma, indicating that LPA-induced PAK1 activation was mediated via a Gi protein and the PI3Kgamma signaling pathway. In addition, we demonstrated that Rac1/Cdc42 signals acted as upstream effector molecules of LPA-induced PAK activation. However, Rho-associated kinase, MAP kinase kinase 1/2 or phospholipase C might not be involved in LPA-induced PAK1 activation or cell motility stimulation. Furthermore, PAK1 was necessary for FAK phosphorylation by LPA, which might cause cell migration, as transfection of the kinase deficient mutant of PAK1 or PAK auto-inhibitory domain significantly abrogated LPA-induced FAK phosphorylation. Taken together, these findings strongly indicated that PAK1 activation was necessary for LPA-induced cell motility and FAK phosphorylation that might be mediated by sequential activation of Gi protein, PI3Kgamma and Rac1/Cdc42.  相似文献   

8.
A rapid increase in the tyrosine phosphorylation of focal adhesion kinase (FAK) has been extensively documented in cells stimulated by multiple signaling molecules, but virtually nothing is known about the regulation of FAK phosphorylation at serine residues. Stimulation of Swiss 3T3 cells with bombesin promoted a striking increase ( approximately 13-fold) in the phosphorylation of FAK at Ser-910, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. Lysophosphatidic acid and epidermal growth factor (EGF) also stimulated FAK phosphorylation at Ser-910. Direct activation of protein kinase C isoforms with phorbol-12,13-dibutyrate (PDB) also promoted striking phosphorylation of FAK at Ser-910. Treatment with the protein kinase C inhibitor GF I or Ro 31-8220 or chronic exposure to PDB prevented the increase in FAK phosphorylation at Ser-910 induced by bombesin or PDB but not by EGF. Treatment with the ERK inhibitors U0126 and PD98059 prevented FAK phosphorylation at Ser-910 in response to all of the stimuli tested. Furthermore, incubation of activated ERK2 with FAK immunocomplexes leads to FAK phosphorylation at Ser-910 in vitro. Our results demonstrate, for the first time, that stimulation with bombesin, lysophosphatidic acid, PDB, or EGF induces phosphorylation of endogenous FAK at Ser-910 via an ERK-dependent pathway in Swiss 3T3 cells.  相似文献   

9.
A rapid increase in tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and Crk-associated substrate (CAS) are prominent early events triggered by many G protein-coupled receptors (GPCRs), but the mechanisms involved remain unclear. Here, we examined whether the Rho-associated protein serine/threonine kinase family (ROCK) is a critical Rho effector in the pathway that links GPCR activation to the tyrosine phosphorylation of FAK, CAS, and paxillin. Treatment of Swiss 3T3 cells with Y-27632, a preferential inhibitor of ROCK, dramatically inhibited the formation of actin stress fibers, the assembly of focal contacts, and the increase in tyrosine phosphorylation of FAK and paxillin induced by bombesin in these cells. Surprisingly, we found that treatment with Y-27632 did not produce any detectable effect on bombesin-elicited CAS tyrosine phosphorylation even at the highest concentrations of Y-27632 tested. HA-1077, a preferential inhibitor of ROCK activity structurally unrelated to Y-27632, also attenuated the increase in the tyrosine phosphorylation of FAK and paxillin but did not affect the tyrosine phosphorylation of CAS induced by bombesin in Swiss 3T3 cells. The results demonstrate that ROCK-dependent tyrosine phosphorylation of FAK and paxillin can be dissociated from a ROCK-independent pathway leading to tyrosine phosphorylation of CAS.  相似文献   

10.
Although hepatic myofibroblast (HMF) migration contributes to the development of fibrosis, the mechanisms coordinating this movement are uncertain. We determined the effects of lysophosphatidic acid (LPA) and platelet-derived growth factor-BB (PDGF) on actin polymerization, FAK tyrosine phosphorylation, and migration of cultured human HMFs. LPA (0.4-100 microM) stimulated migration, FAK tyrosine phosphorylation, and stress fiber assembly with a sigmoidal dose response. PDGF (1-250 ng/ml) stimulated migration, FAK tyrosine phosphorylation, and actin polymerization with a bell-shape dose-response characterized by a maximum at 10-25 ng/ml. Concentrations of cytochalasin D, which abolished FAK tyrosine phosphorylation, also blocked LPA- and PDGF-induced migration. A dose of 1-10 ng/ml PDGF acted synergistically with LPA (10 microM) to stimulate FAK tyrosine phosphorylation and migration, whereas higher concentrations of PDGF (100-250 ng/ml) inhibited FAK tyrosine phosphorylation and migration in response to LPA (10 microM). These data indicate that PDGF and LPA coordinately govern the migration of HMFs by differentially regulating FAK and suggest a novel model in which PDGF, acting as an amplifier/attenuator of LPA-induced signaling, facilitates HMF accumulation within injured areas of the liver.  相似文献   

11.
Human platelets provide an excellent model system for the study of phosphorylation events during signal transduction and cell adhesion. Platelets are terminally differentiated cells that exhibit rapid phosphorylation of many proteins upon agonist-induced activation and aggregation. We have sought to identify the kinases as well as the phosphorylated substrates that participate in thrombin-induced signal transduction and platelet aggregation. In this study, we have identified two forms of mitogen-activated protein kinase (MAPK), p42mapk and p44mapk, in platelets. The data demonstrate that p42mapk but not p44mapk becomes phosphorylated on serine, threonine, and tyrosine during platelet activation. Immune complex kinase assays, gel renaturation assays, and a direct assay for MAPK activity in platelet extracts all support the conclusion that p42mapk but not p44mapk shows increased kinase activity during platelet activation. The activation of p42mapk, independently of p44mapk, in platelets is unique since in other systems, both kinases are coactivated by a variety of stimuli. We also show that platelets express p90rsk, a ribosomal S6 kinase that has previously been characterized as a substrate for MAPK. p90rsk is phosphorylated on serine in resting platelets, and this phosphorylation is enhanced upon thrombin-induced platelet activation. Immune complex kinase assays demonstrate that the activity of p90rsk is markedly increased during platelet activation. Another ribosomal S6 protein kinase, p70S6K, is expressed by platelets but shows no change in kinase activity upon platelet activation with thrombin. Finally, we show that the increased phosphorylation and activity of both p42mapk and p90rsk does not require integrin-mediated platelet aggregation. Since platelets are nonproliferative cells, the signal transduction pathways that include p42mapk and p90rsk cannot lead to a mitogenic signal and instead may regulate cytoskeletal or secretory changes during platelet activation.  相似文献   

12.
Muscarinic receptor-mediated changes in protein tyrosine phosphorylation were examined in differentiated human neuroblastoma SH-SY5Y cells. Treatment of differentiated cells with 1 mM carbachol caused rapid increases in the tyrosine phosphorylation of focal adhesion kinase (FAK), Cas, and paxillin. The src family kinase-selective inhibitor PP1 reduced carbachol-stimulated tyrosine phosphorylation of FAK, Cas, and paxillin by 50 to 75%. In contrast, carbachol-stimulated activation of ERK1/2 was unaffected by PP1. Src family kinase activation by carbachol was further demonstrated by increased carbachol-induced tyrosine phosphorylation of the src-substrate, p120, and tyrosine phosphorylation of the src family kinase activation-associated autophosphorylation site. Site-specific FAK phosphotyrosine antibodies were used to determine that the carbachol-stimulated increase in the autophosphorylation of FAK was unaffected by pretreatment with PP1, whereas the carbachol-stimulated increase in the src family kinase-mediated phosphotyrosine of FAK was completely blocked by pretreatment with PP1. In SH-SY5Y cell lines stably overexpressing Fyn, the phosphotyrosine immunoreactivity of FAK was 625% that of control cells. Thus, muscarinic receptors activate protein tyrosine phosphorylation in differentiated cells, and the tyrosine phosphorylation of FAK, Cas, and paxillin, but not ERK1/2, is mediated by a src family tyrosine kinase activated in response to stimulation of muscarinic receptors.  相似文献   

13.
Treatment of quiescent Swiss 3T3 cells with the mitogenic peptides bombesin, vasopressin, endothelin/vasoactive intestinal contractor (VIC), and bradykinin strikingly increased the initial rate of tyrosine phosphorylation measured in anti-phosphotyrosine immunoprecipitates of a major band of Mr 115,000 (p115) and two minor components of Mr 90,000 and 75,000. Neuropeptides increased the labeling of p115 within seconds and with great potency; half-maximum concentrations were 0.1, 0.2 and 0.3 nM for bombesin, vasopressin, and VIC, respectively. Immunoblotting and peptide mapping showed that the p115 band phosphorylated in anti-phosphotyrosine immunoprecipitates is identical to a major Mr 115,000 substrate for neuropeptide-stimulated tyrosine phosphorylation in intact Swiss 3T3 cells. Furthermore, bombesin, vasopressin, and VIC markedly increased the rate of phosphorylation of Raytide, a broad specificity tyrosine kinase peptide substrate, by decreasing (8 +/- 1.3-fold) the apparent Km of the kinase for the substrate. Phorbol 12,13-dibutyrate and the Ca2+ ionophore A23187 had a weaker effect on tyrosine protein kinase activity in immune complexes compared with bombesin. Furthermore, down-regulation of protein kinase C blocked the small effect of phorbol esters but did not impair bombesin-stimulated tyrosine kinase activity. These results provide direct evidence for neuropeptide activation of a tyrosine kinase in cell-free preparations and identify a novel event in the action of this class of growth factors in Swiss 3T3 cells.  相似文献   

14.
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases activated by dual phosphorylation on threonine and tyrosine residues. A MAP kinase kinase (MKK1 or MEK1) has been identified as a dual-specificity protein kinase that is sufficient to phosphorylate MAP kinases p42mapk and p44mapk on the regulatory threonine and tyrosine residues. Because of the multiplicity of MAP kinase isoforms and the diverse circumstances and agonists leading to their activation, we thought it unlikely that a single MKK could accommodate this complexity. Indeed, two protein bands with MKK activity have previously been identified after renaturation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We now report the molecular cloning and characterization of a second rat MAP kinase kinase cDNA, MKK2. MKK2 cDNA contains an open reading frame encoding a protein of 400 amino acids, 7 residues longer than MKK1 (MEK1). The amino acid sequence of MKK2 is 81% identical to that of MKK1, but nucleotide sequence differences occur throughout the aligned MKK2 and MKK1 cDNAs, indicating that MKK2 is the product of a distinct gene. MKK1 and MKK2 mRNAs are expressed differently in rat tissues. Both cDNAs when expressed in COS cells displayed the ability to phosphorylate and activate p42mapk and p44mapk, both MKK1 and MKK2 were activated in vivo in response to serum, and both could be phosphorylated and activated by the v-Raf protein in vitro. However, differences between MKK1 and MKK2 in sites of phosphorylation by proline-directed protein kinases predict differences in feedback regulation.  相似文献   

15.
We have previously shown that sphingosine 1-phosphate (S1P) stimulates motility of human umbilical vein endothelial cells (HUVECs) (O.-H. Lee et al., Biochem. Biophys. Res. Commun. 264, 743-750, 1999). To investigate the molecular mechanisms by which S1P stimulates HUVEC motility, we examined tyrosine phosphorylation of p125 focal adhesion kinase (p125(FAK)) which is important for cell migration. S1P induces a rapid increase in tyrosine phosphorylation of p125(FAK). Compared with other structurally related lipid metabolites such as sphingosine, C2-ceramide, and lysophosphatidic acid, S1P uniquely stimulated p125(FAK) tyrosine phosphorylation and migration of HUVECs. The effect of S1P on p125(FAK) tyrosine phosphorylation was markedly reduced by treatment with pertussis toxin or U73122, a phospholipase C (PLC) inhibitor. As a downstream signal of PLC, p125(FAK) tyrosine phosphorylation in response to S1P was totally blocked by depletion of the intracellular calcium pool. However, protein kinase C (PKC) inhibitor had no effect on the response to S1P. Finally, chemotaxis assays revealed that inhibition of PLC but not PKC significantly abrogated S1P-stimulated HUVEC migration. These results suggest that the G(i)-coupled receptor-mediated PLC-Ca(2+) signaling pathway may be importantly involved in S1P-stimulated focal adhesion formation and migration of endothelial cells.  相似文献   

16.
Tumour necrosis factor (TNF) is a potent mitogen for some fibroblast cell lines. Here we have examined the TNF-mediated changes in protein phosphorylation in Swiss 3T3 and human FS-4 fibroblasts, and compared them with changes observed after the treatment of cells with other mitogens, such as platelet-derived growth factor (PDGF) and bombesin. TNF stimulated the rapid phosphorylation of two 41,000-Mr and two 43,000-Mr cytosol proteins on tyrosine, threonine and/or serine, as did PDGF, epidermal growth factor and fibroblast growth factor; the increased levels of this mitogen-induced protein-tyrosine phosphorylation correlated well with the extent of mitogen-induced DNA synthesis as determined by the percentage of labelled nuclei. In contrast, bombesin, which is an even better mitogen for Swiss 3T3 cells than TNF, stimulated the tyrosine phosphorylation of 41,000-Mr and 43,000-Mr proteins only to a limited extent. On the other hand, bombesin and PDGF stimulated the rapid serine phosphorylation of an 80,000-Mr acidic protein, a major substrate for protein kinase C; increased phosphorylation of the 80,000-Mr protein was not observed at all when cells were stimulated with TNF. These results suggest significant differences among the mitogenic signalling pathways of TNF, PDGF and bombesin as regards the involvement of protein kinases; the mitogenic signalling pathway of TNF involves the activation of tyrosine kinase, but not of protein kinase C, whereas bombesin seems to transduce its mitogenic signal mainly through the activation of protein kinase C, and the activation of both kinases seems to be involved in the mitogenic signalling pathway of PDGF.  相似文献   

17.
Receptor for bombesin with associated tyrosine kinase activity.   总被引:5,自引:6,他引:5       下载免费PDF全文
The neuropeptide bombesin is known for its potent mitogenic activity on murine 3T3 fibroblasts and other cells. Recently it has been implicated in the pathogenesis of small cell lung carcinoma, in which it acts through an autocrine loop of growth stimulation. Phosphotyrosine (P-Tyr) antibodies have been successfully used to recognize the autophosphorylated receptors for known growth factors. In Swiss 3T3 fibroblasts, phosphotyrosine antibodies identified a 115,000-Mr cell surface protein (p115) that became phosphorylated on tyrosine as a specific response to bombesin stimulation of quiescent cells. The extent of phosphorylation was dose dependent and correlated with the mitogenic effect induced by bombesin, measured by [3H]thymidine incorporation. Tyrosine phosphorylation of p115 was detectable minutes after the addition of bombesin, and its time course paralleled that described for the binding of bombesin to its receptor. Immunocomplexes of phosphorylated p115 and phosphotyrosine antibodies bound 125I-labeled [Tyr4]bombesin in a specific and saturable manner and displayed an associated tyrosine kinase activity enhanced by bombesin. Furthermore, the 125I-labeled bombesin analog gastrin-releasing peptide, bound to intact live cells, was coprecipitated with p115. These data strongly suggest that p115 participates in the structure and function of the surface receptor for bombesin, a new member of the family of growth factor receptors with associated tyrosine kinase activity.  相似文献   

18.
Mitogenic G protein-coupled receptors, such as those for lysophosphatidic acid (LPA) and thrombin, activate the Ras/MAP kinase pathway via pertussis toxin (PTX)-sensitive Gi, tyrosine kinase activity and recruitment of Grb2, which targets guanine nucleotide exchange activity to Ras. Little is known about the tyrosine phosphorylations involved, although Src activation and Shc phosphorylation are thought to be critical. We find that agonist-induced Src activation in Rat-1 cells is not mediated by Gi and shows no correlation with Ras/MAP kinase activation. Furthermore, LPA-induced tyrosine phosphorylation of Shc is PTX-insensitive and Ca2+-dependent in COS cells, but undetectable in Rat-1 cells. Expression of dominant-negative Src or Shc does not affect MAP kinase activation by LPA. Thus, Gi-mediated Ras/MAP kinase activation in fibroblasts and COS cells involves neither Src nor Shc. Instead, we detect a 100 kDa tyrosine-phosphorylated protein (p100) that binds to the C-terminal SH3 domain of Grb2 in a strictly Gi- and agonist-dependent manner. Tyrosine kinase inhibitors and wortmannin, a phosphatidylinositol (PI) 3-kinase inhibitor, prevent p100-Grb2 complex formation and MAP kinase activation by LPA. Our results suggest that the p100-Grb2 complex, together with an upstream non-Src tyrosine kinase and PI 3-kinase, couples Gi to Ras/MAP kinase activation, while Src and Shc act in a different pathway.  相似文献   

19.
Transformation of cells by src -like kinases leads to altered cell morphology associated with the disassembly of focal contacts and concomitant increase in tyrosine phosphorylation of pp125(FAK) x p56(lck) is a lymphocyte-specific member of the src family of protein tyrosine kinases that associates with cell surface glycoproteins such as CD4 and CD8. It phosphorylates and activates pp125(FAK) and increases its autokinase activity, thus pretreatment of pp125(FAK) with protein kinase C (PKC) markedly attenuates its phosphorylation and activation, suggesting a potential regulatory pathway of pp125(FAK) activation in focal contacts. p56(lck) further phosphorylates and activates actin binding protein (ABP-280; filamin) and controls its association with cell surface receptors such as beta-2 integrins, actin filament cross-linking, and possibly lipid membrane insertion.  相似文献   

20.
One of the early events after stimulation of Swiss 3T3 cells with either platelet-derived growth factor (PDGF), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), diacylglycerol, or several other mitogens is the near stoichiometric phosphorylation at tyrosine and serine of a scarce cytoplasmic protein (p42). TPA and diacylglycerol are known to directly stimulate the activity of a protein-serine/threonine kinase, protein kinase C (PKC). PDGF and several other mitogens stimulate tyrosine kinases directly and PKC indirectly. We have therefore examined the involvement of PKC in p42 tyrosine phosphorylation in Swiss 3T3 cells. Firstly, six agents which stimulated phosphorylation of p42 also stimulated phosphorylation of a known PKC substrate, an 80,000-Mr protein (p80). Secondly, in PKC-deficient cells (cells in which PKC activity was reduced to undetectable levels by prolonged exposure to TPA), PDGF-induced p42 phosphorylation was reduced three- to fourfold. Phosphoamino acid analysis of phosphorylated p42 from PDGF-stimulated PKC-deficient cells revealed primarily phosphoserine and only a trace of phosphotyrosine, suggesting that the reduction in PDGF-stimulated tyrosine phosphorylation of p42 resulting from PKC deficiency is greater than three- to fourfold. Finally, comparison of antiphosphotyrosine immunoprecipitates of PKC-deficient versus naive cells revealed that most other PDGF-induced tyrosine phosphorylation events were quite similar. These data suggest that mitogens such as PDGF, which directly stimulate phosphorylation of some proteins at tyrosine, induce p42 tyrosine phosphorylation via a cascade of events involving PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号