首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
Ideal biomaterials for bone grafts must be biocompatible, osteoconductive, osteoinductive and have appropriate mechanical properties. For this, the development of synthetic bone substitutes mimicking natural bone is desirable, but this requires controllable mineralization of the collagen matrix. In this study, densified collagen films (up to 100 μm thick) were fabricated by a plastic compression technique and cross-linked using carbodiimide. Then, collagen-hydroxyapatite composites were prepared by using a polymer-induced liquid-precursor (PILP) mineralization process. Compared to traditional methods that produce only extrafibrillar hydroxyapatite (HA) clusters on the surface of collagen scaffolds, by using the PILP mineralization process, homogeneous intra- and extrafibrillar minerals were achieved on densified collagen films, leading to a similar nanostructure as bone, and a woven microstructure analogous to woven bone. The role of collagen cross-links on mineralization was examined and it was found that the cross-linked collagen films stimulated the mineralization reaction, which in turn enhanced the mechanical properties (hardness and modulus). The highest value of hardness and elastic modulus was 0.7 ± 0.1 and 9.1 ± 1.4 GPa in the dry state, respectively, which is comparable to that of woven bone. In the wet state, the values were much lower (177 ± 31 and 8 ± 3 MPa) due to inherent microporosity in the films, but still comparable to those of woven bone in the same conditions. Mineralization of collagen films with controllable mineral content and good mechanical properties provide a biomimetic route toward the development of bone substitutes for the next generation of biomaterials. This work also provides insight into understanding the role of collagen fibrils on mineralization.  相似文献   

2.
The biomimetic approach mimicking in vivo micro environment is the key for developing functional tissue engineered constructs. In this study, we used a tripolymer combination consisting of a natural polymer, chitosan and two extracellular matrix components; collagen type 1 and hyaluronic acid to coat tissue culture plate to evaluate their effect on osteogenic differentiation of human bone marrow derived mesenchymal stem cells (hMSCs). The polymers were blended at different mixing ratios and the tissue culture plates were coated either by polyblend method or by surface modification method. hMSCs isolated from adult bone marrow were directed to osteoblast differentiation on the coated plates. Our results showed that the tripolymer coating of the tissue culture plate enhanced mineralization as evidenced by calcium quantification exhibiting significantly higher amount of calcium compared to the untreated or individual polymer coated plates. We found that the tripolymer coated plates having a 1:1 mixing ratio of chitosan and collagen type 1, surface modified with hyaluronic acid is an ideal combination to achieve the synergistic effect of these polymers on in vitro osteogenic differentiation of hMSCs. These results thus, establish a novel biomimetic approach of surface modification to enhance osteoblast differentiation and mineralization. Our findings hold great promise in implementing a biomimetic surface coating to improve osteoconductivity of implants and scaffolds for various orthopaedic and bone tissue engineering applications.  相似文献   

3.
Protein-water dynamics in mixtures of water and a globular protein, bovine serum albumin (BSA), was studied over wide ranges of composition, in the form of solutions or hydrated solid pellets, by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption isotherm (ESI) measurements were performed at room temperature. The crystallization and melting events were studied by DSC and the amount of uncrystallized water was calculated by the enthalpy of melting during heating. The glass transition of the system was detected by DSC for water contents higher than the critical water content corresponding to the formation of the first sorption layer of water molecules directly bound to primary hydration sites, namely 0.073 (grams of water per grams of dry protein), estimated by ESI. A strong plasticization of the T(g) was observed by DSC for hydration levels lower than those necessary for crystallization of water during cooling, i.e. lower than about 0.3 (grams of water per grams of hydrated protein) followed by a stabilization of T(g) at about -80°C for higher water contents. The α relaxation associated with the glass transition was also observed in dielectric measurements. In TSDC a microphase separation could be detected resulting in double T(g) for some hydration levels. A dielectric relaxation of small polar groups of the protein plasticized by water, overlapped by relaxations of uncrystallized water molecules, and a separate relaxation of water in the crystallized water phase (bulk ice crystals) were also recorded.  相似文献   

4.
In this paper, impedance measurements in the frequency range from 10(-2) to 10(6) Hz are presented for collagen and algal sulfated polysaccharide crosslinked films. We are considering the development of new biomaterials which have potential applications in coating of cardiovascular prostheses, support for cellular growth and in systems for controlled drug delivery. The effect of crosslink sulfated polysaccharide on the physical chemical properties of collagen was studied using FT-infrared spectroscopy, differential scanning calorimetry (DSC), dielectric spectroscopy. The resulting films crosslinked with glutaraldehyde (GA) in concentrations of 0.001% and 0.05% when analysed by DSC, showed that the GA treatment not only left the thermal stability of the collagen unaffected, but it also decreased the thermal transition energy. Dielectric spectroscopy shows that the effect of the crosslink on the blend film was associated to the decrease and stabilization of the dielectric permittivity at low frequencies and decreased its conductivity.  相似文献   

5.
Differential scanning calorimetry (DSC) and two dielectric techniques, broadband dielectric relaxation spectroscopy and thermally stimulated depolarization currents (TSDC), were employed to study glass transition and water and protein dynamics in mixtures of water and a globular protein, lysozyme, in wide ranges of water content, both solutions, and hydrated solid samples. In addition, water equilibrium sorption isotherms (ESI) measurements were performed at room temperature. The main objective was to correlate results by different techniques to each other and to determine critical water contents for various processes. From ESI measurements the content of water directly bound to primary hydration sites was determined to 0.088 (grams of water per grams of dry protein), corresponding to 71 water molecules per protein molecule, and that where clustering becomes significant to about 0.25. Crystallization and melting events of water were first observed at water contents 0.270 and 0.218, respectively, and the amount of uncrystallized water was found to increase with increasing water content. Two populations of ice crystals were observed by DSC, primary and bulk ice crystals, which give rise to two separate relaxations in dielectric measurements. In addition, the relaxation of uncrystallized water was observed, superimposed on a local relaxation of polar groups on the protein surface. The glass transition temperature, determined by DSC and TSDC in rather good agreement to each other, was found to decrease significantly with increasing water content and to stabilize at about −90 °C for water contents higher than about 0.25. This is a novel result of this study with potential impact on cryoprotection and pharmaceutics.  相似文献   

6.
The elastic properties of bone tissue determine the biomechanical behavior of bone at the organ level. It is now widely accepted that the nanoscale structure of bone plays an important role to determine the elastic properties at the tissue level. Hence, in addition to the mineral density, the structure and organization of the mineral nanoparticles and of the collagen microfibrils appear as potential key factors governing the elasticity. Many studies exist on the role of the organization of collagen microfibril and mineral nanocrystals in strongly remodeled bone. However, there is no direct experimental proof to support the theoretical calculations. Here, we provide such evidence through a novel approach combining several high resolution imaging techniques: scanning acoustic microscopy, quantitative scanning small-Angle X-ray scattering imaging and synchrotron radiation computed microtomography. We find that the periodic modulations of elasticity across osteonal bone are essentially determined by the orientation of the mineral nanoparticles and to a lesser extent only by the particle size and density. Based on the strong correlation between the orientation of the mineral nanoparticles and the collagen molecules, we conclude that the microfibril orientation is the main determinant of the observed undulations of microelastic properties in regions of constant mineralization in osteonal lamellar bone. This multimodal approach could be applied to a much broader range of fibrous biological materials for the purpose of biomimetic technologies.  相似文献   

7.
综合运用三维凝胶叠层法和发泡法制备了多孔β-磷酸三钙支架。将多孔支架在1.5倍模拟体液中浸泡14天,得到材料1;或者将其在氢氧化钠溶液中浸泡4天,再在1.5倍模拟体液中浸泡14天,得到材料2。测定了两种材料的物理性能,讨论了类骨磷灰石层对材料矿物组成及其显微结构等的影响。将两组材料分别与成骨前体细胞在体外复合培养,观察和测定了细胞的形态和增殖情况。结果表明复合材料的主要成分为β-磷酸三钙,表面具有结构不完整的含有碳酸磷灰石的类骨磷灰石,成骨细胞能在两组材料上正常粘附和增殖,而且材料2上的细胞粘附情况更好,说明多孔β-磷酸三钙与磷灰石的复合材料有望成为一种有应用前景的骨修复材料和骨组织工程支架材料。  相似文献   

8.
The ultrastructure of dermal fibres of a 200Myr thunniform ichthyosaur, Ichthyosaurus, specifically the 67nm axial repeat D-banding of the fibrils, which characterizes collagen, is presented for the first time by means of scanning electron microscopy (SEM) analysis. The fragment of material investigated is part of previously described fossilized skin comprising an architecture of layers of oppositely oriented fibre bundles. The wider implication, as indicated by the extraordinary quality of preservation, is the robustness of the collagen molecule at the ultrastructural level, which presumably contributed to its survival during the initial processes of decomposition prior to mineralization. Investigation of the elemental composition of the sample by SEM-energy dispersive X-ray spectroscopy indicates that calcite and phosphate played important roles in the rapid mineralization and fine replication of the collagen fibres and fibrils. The exceedingly small sample used in the investigation and high level of information achieved indicate the potential for minimal damage to prized museum specimens; for example, ultrastructural investigations by SEM may be used to help resolve highly contentious questions, for example, 'protofeathers' in the Chinese dinosaurs.  相似文献   

9.
The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.  相似文献   

10.
Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers.Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity.  相似文献   

11.
To investigate the physical state of water in hydrating biological macro-molecules, the dielectric properties of water in hen egg lysozyme pellets with various moisture contents were studied using the thermally stimulated depolarisation currents technique. The water dipoles appeared to be directly involved in the relaxation processes, such that, by increasing the content of water of sorption from ho = 0.075 to ho = 0.29, the current density recorded increased abruptly at moisture content above 0.075. At a fixed starting hydration level, the time evolution of water content was also studied by isothermal sample aging in dynamic vacuum: the TSDC spectra changed in both intensity and position of their main peaks (TM = 245 K, 190 K, 150 K) with moisture content and showed hysteresis. The complex behaviour of the TSDC response can be compared with the results obtained with the same technique on other biological macromolecules and suggests possible models for water configurations and rearrangements.  相似文献   

12.
The aim of this study is to investigate the effects of differentiation of rabbit bone marrow mesenchymal stem cells (rBMSCs) into chondrocytes induced by transforming growth factor-beta1 (TCP-β1) composite poly-1actide-co-glycolic acid/nano-hydroxyapatite (PLLA/nano-HA) to the construction of biomimetic artificial cartilage in vitro. In the low-temperature extrusion preparation of PLLA/nano-HA composite porous scaffolds, rBMSCs were isolated and cultured to third generation in vitro, induced by TGF-β1-contained special inducing system into chondrocytes, 14 d later, identified by toluidine blue and type II collagen immunohistochemistry staining, and then the differential chondrocytes composite into the PLLA/nano-HA composite porous scaffolds, using scanning electron microscopy (SEM) to observe the growth conditions and cell attachment on the composite in the 7th,14th, and 21st day and to gather cells on composite in the 7th, 14th, and 21st day of cell. RT-PCR is used to detect the expression of aggrecan (Col2A1 in mRNA) and Western blot for detection of the expression of type II collagen of the attached cells. rBMSCs can differentiate into chondrocytes when induced, and the differentiation of chondrocytes secreting GAG by toluidine blue staining and type II collagen immunohistochemistry staining was positive; SEM confirm the cells distribution evenly, stretching well in composite. RT-PCR of aggrecan, Col2A1 in mRNA, and Western-blot of type II collagen expression in the differentiation of chondrocytes have different levels. Using TGF-β1 containing special inducing system induced rBMSCs into chondrocytes, then into compounds of PLLA/nano-HA composite porous scaffolds, and cell carrier complex proliferated well and secreted the chondrocyte-specific extracellular matrix stably, successfully constructing artificial bionic in vitro.  相似文献   

13.
Scanning electron microscopy of bone cells in culture   总被引:1,自引:0,他引:1  
Summary Embryonic and young rat bone cells have been grown in culture and examined in the scanning electron microscope (SEM). Compared with cells fixed in situ and taken directly from the animal, the cultured osteoblastic cells were smoother, flatter and more extensive and showed tighter intercellular contacts. Some matrix is formed in culture and undergoes at least partial mineralization as judged by the accumulation of Ca and P measured by energy dispersive x-ray analysis. Findings concerning the morphology of the collagen arrangement were indecisive. Some superficial cells, free of surrounding matrix, resembled osteocytes in normal in vivo bone. This may indicate that a proportion of the extracellular matrix produced by the cultured cells failed to polymerise into recognizable bone matrix, and that osteocytic morphology is not dependent upon the physical characteristics of the bone matrix.  相似文献   

14.
The alterations of hierarchical structures of bone by gene mutation in the zebrafish, which is associated with abnormal bone mineralization and bone disease, were reported for the first time in this paper. Bone samples from the liliput(dtc232) (lil) mutants as well as normal controls were studied by polarized light microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and atomic force microscope (AFM). Light microscopy examinations reveal that the lil bone has asymmetric mineralization and much thinner bone wall. The SEM studies show a lot of microcracks in lil bone wall. And the plywood-like structure of the normal bone does not exist in the lil bone, which is confirmed by the measurements of polarized light microscope. Furthermore, the TEM investigations display the collagen fibrils with two typical diameters. For the thinner collagen fibrils, the diameter of lil bone is about twice larger than that of the wild-type bone. And for the thicker one, there is a small increase in diameter after mutation and the band periodicity of the lil bone is similar with that of wild-type bone, which is consistent with the result of AFM. The morphologies of the minerals revealed that the mutated mineral was in bigger size and the shape was irregular but not plate-shaped.  相似文献   

15.
Dynamics of uncrystallized water and protein was studied in hydrated pellets of the fibrous protein elastin in a wide hydration range (0 to 23 wt.%), by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption–desorption measurements (ESI) were performed at room temperature. The glass transition of the system was studied by DSC and its complex dependence on hydration water was verified. A critical water fraction of about 18 wt.% was found, associated with a reorganization of water in the material. Three dielectric relaxations, associated to dynamics related to distinct uncrystallized water populations, were recorded by TSDC and DRS. The low temperature secondary relaxation of hydrophilic polar groups on the protein surface triggered by hydration water for almost dry samples contains contributions from water molecules themselves at higher water fractions (ν relaxation). This particular relaxation is attributed to water molecules in the primary and secondary hydration shells of the protein fibers. At higher temperatures and for water fraction values equal to or higher than 10 wt.%, a local relaxation of water molecules condensed within small openings in the interior of the protein fibers was recorded. The evolution of this relaxation (w relaxation) with hydration level results in enhanced cooperativity at high water fraction values, implying the existence of “internal” water confined within the protein structure. At higher temperatures a relaxation associated with water dynamics within clusters between fibers (p relaxation) was also recorded, in the same hydration range.  相似文献   

16.
The cells in bone grow on a composite matrix made up of mineral and organic (mainly type-I collagen) components. In this study, anorganic bone mineral (ABM) particles were coated with a cell-binding domain of type-I collagen (P-15 peptide) to mimic the bone matrix components and suspended in injectable hyaluronate (Hy) hydrogels. The ABM/P-15/Hy was compared to ABM/Hy-the same matrix without P-15 peptide. Osteoblast-like HOS cells migrated through the hydrogels around ABM/P-15 or ABM particles; however, more cells adhered to ABM/P-15/Hy particles, and the cells formed better surface coverage and had more stress fibers on ABM/P-15/Hy. HOS cells cultured on ABM/P-15/Hy had increased osteogenic gene expression for alkaline phosphatase and bone morphogenetic proteins, and deposited more mineralized matrix. Studies with two different hydrogels (carboxymethylcellulose and sodium alginate) showed similar enhanced cell attachment and mineralization. The studies suggest that the ABM/P-15 in hydrogels can be used as an injectable biomimetic matrix to facilitate bone repair.  相似文献   

17.
The state of collagen molecules in the fibres of tail tendon, skin and demineralized bone has been investigated in situ using differential scanning calorimetry (DSC). Hydroxyproline analysis and tissue digestion with bacterial collagenase and trypsin were used to confirm that the common cause of all the DSC endotherms was collagen denaturation. This occurred within a narrow temperature range in tendons, but over a wide temperature range in demineralized bone and old skin and demonstrated that in tendon and demineralized bone at least the same type I collagen molecule exists in different thermal states. Hypothesizing that this might be caused by different degrees of confinement within the fibre lattice, experiments were performed to measure the effect of changing the lattice dimensions by extracting the collagen into dilute solution with pepsin, swelling the lattice in acetic acid, and contracting the lattice by dehydration. A theoretical analysis was undertaken to predict the effect of dehydration. Results were consistent with the hypothesis, demonstrating that collagen molecules within the natural fibres of bone and old skin are located at different intermolecular spacings, revealing differences between molecules in the magnitude of either the attractive or repulsive forces controlling their separation. One potential cause of such variation is known differences in covalent cross-linking.  相似文献   

18.
Many models that have been developed for cortical bone oversimplify much of the architectural and physical complexity. With SiNuPrOs model, a more complete approach is investigated: it is multiscale because it contains five structural levels and multi physic because it takes into account simultaneously structure (with various properties: elasticity, piezoelectricity, porous medium), fluid and mineralization process modelization. The multiscale aspect is modeled by using 18 structural parameters in a specific application of the mathematical theory of homogenization and 10 other physical parameters are necessary for the multi physic aspect. The modelization of collagen as a piezoelectric medium has needed the development of a new behaviour law allowing a better simulation of the effect of a medium considered as evolving during a mineralization process. Then the main interest of SiNuPrOs deals with the possibility to study, at each level of the cortical architecture, either the elastic properties or the fluid motion or the piezoelectric effects or both of them. All these possibilities constitute a very large work and all this mass of information (fluid aspects, even at the nanoscopic scale, piezoelectric phenomena and simulations) will be presented in several papers. This first one is only devoted to the presentation of this model with an application to the computation of elastic properties at the macroscopic scale. The computational methods have been packed into software also called SiNuPrOs and allowing a large number of predictive simulations corresponding to various different configurations.  相似文献   

19.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   

20.
One of the most important challenges in tissue engineering research is the development of biomimetic materials. In this present study, we have investigated the effect of the titanium dioxide (TiO2) nanoparticles on the properties of electrospun mats of poly (hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), to be used as scaffold. The morphology of electrospun fibers was observed by scanning electron microscopy (SEM). Both pure PHBV and nanocomposites fibers were smooth and uniform. However, there was an increase in fiber diameter with the increase of TiO2 concentration. Thermal properties of PHBV and nanocomposite mats were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC analysis showed that the crystallization temperature for PHBV shifts to higher temperature in the presence of the nanoparticles, indicating that TiO2 nanoparticles change the process of crystallization of PHBV due to heterogeneous nucleation effect. TGA showed that in the presence of the nanoparticles, the curves are shifted to lower temperatures indicating a decreasing in thermal stability of nanocomposites compared to pure PHBV. To produce scaffolds for tissue engineering, it is important to evaluate the biocompatibility of the material. Cytotoxicity assay showed that TiO2 nanoparticles were not cytotoxic for cells at the concentration used to synthesize the mats. The proliferation of cells on the mats was evaluated by the MTT assay. Results showed that the nanocomposite samples increased cell proliferation compared to the pure PHBV. These results indicate that continuous electrospun fibrous scaffolds may be a good substrate for tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号