首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the effect of exercise on the rate of onset of hypoglycemia induced by infusion of excess insulin (0.8 mU.min-1.100 g-1). Rats were either fasted overnight (FS) or fed ad libitum (FD). FS rats were killed after 5, 10, or 15 min of infusion at rest or after running on the treadmill at 21 m/min and 15% grade. FD rats were killed after 10, 20, or 40 min of infusion at rest or after exercise. Rats were also killed 15 min postexercise for FS and 60 or 120 min postexercise for FD with continued insulin infusion. The progressive decline in blood glucose was not altered by exercise in the FS rats. FD rats showed a significant difference due to exercise only after 40 min (rest 4.2 +/- 0.3 mM, exercise 3.2 +/- 0.2 mM). A significant postexercise repletion of glycogen was observed in red vastus and soleus muscles of FD rats despite the decreasing blood glucose values. These data indicate that exercise accelerates the rate of development of hypoglycemia in FD rats. In the FS rats, where the rate of decline in blood glucose was greater, exercise had no effect on the time course of development of hypoglycemia.  相似文献   

2.
Reductions in blood pressure that are associated with exercise training have been hypothesized to be the result of a sustained postexertional vascular alteration following single bouts of exercise. The purpose of this study was to determine whether a decrease in vascular sensitivity to vasoconstrictor agonists occurs after a single bout of exercise and whether this vascular alteration is sustained through various periods of exercise training. Vascular responses of abdominal aortic rings to norepinephrine (NE; 10(-9)-10(-4) M) were determined in vitro. Aortas were isolated from sedentary rats immediately after rats performed a single bout of treadmill exercise (30 m/min for 1 h); 24 h after the last exercise bout in rats exercised for 1 day; and 1, 2, 4, and 10 wk of training at 30 m/min, 60 min, 5 days/wk. Sensitivity to NE was only diminished after 10 wk of training. This diminished vascular sensitivity to NE was abolished with the removal of the endothelial cell layer. Furthermore, there were no reductions in developed tension or vascular sensitivity to the vasoconstrictor agonists KCl (10-100 mM), phenylephrine (10(-8)-10(-4) M), and arginine vasopressin (10(-9)-10(-5) M) in vessels either with or without the endothelial layer after a single bout of exercise. These data indicate that a single bout of exercise does not diminish aortic responsiveness to vasoconstrictor agonists and thus is not responsible for the diminished contractile responsiveness that occurs between 4 and 10 wk of moderate-intensity exercise training in rats. This vascular adaptation to exercise training appears to be mediated through an endothelium-dependent mechanism.  相似文献   

3.
To determine running performance and hormonal and metabolic responses during insulin-induced hypoglycemia, fed and fasted male rats (315 +/- 3 g) were infused with insulin (100 mU/ml, 1.5 ml/h) or saline (1.5 ml/h) for 60 min and then killed at rest or after running on the treadmill (21 m/min, 15% grade). Insulin-infused fed rats ran poorly during the second 10 min of a 20-min exercise test. They were capable of running a total of 43 +/- 5 min, compared with 138 +/- 6 min for saline-infused fed rats. Fasted insulin-infused rats were able to run only 12.8 +/- 0.8 min, compared with 122 +/- 15 min for fasted saline-infused rats. In fasted rats, blood glucose was 1.6 +/- 0.1 mM after 60 min of insulin infusion and 1.2 +/- 0.1 mM after running to exhaustion. Artificial increase of plasma free fatty acids had no effect on performance. Intravenous infusion of glucose at the time of fatigue produced an immediate recovery, allowing the formerly fatigued rats to run 20 min without development of fatigue. These results provide evidence that severe hypoglycemia can be a significant cause of fatigue, even if it occurs early in the course of an exercise bout.  相似文献   

4.
The purpose of the study was to determine whether exercise would activate JNK in the heart and whether chronic exercise training would alter the response. Untrained rats were familiarized with the treadmill and assigned to one of four groups: low intensity (LI), 10 min, 0%, 15 m/min; medium intensity (MI), 10 min, 0%, 33 m/min; high intensity (HI), 10 min, 25%, 33 m/min; long duration (LD), 30 min, 0%, 15 m/min. Another cohort of rats was subjected to a progressive 6 wk high-intensity training protocol that produced a 12% increase in heart mass. In untrained rats, JNK activity was LI: 1.5 (fold nonrun control), MI: 2.0, HI: 2.5, LD: 1.25 immediately after a single bout of exercise. In trained rats, no activation of JNK above baseline was detected after either a 10-min or 1-h bout of exercise. We concluded that treadmill exercise activates JNK in the rat heart in an intensity-dependent manner and that chronic training abrogates the myocardial JNK response to a bout of exercise.  相似文献   

5.
The purpose of this study was to determine the effects of high-intensity treadmill exercise training on 1) the regional distribution of muscle blood flow within and among muscles in rats during high-intensity treadmill exercise (phase I) and 2) on the total and regional hindlimb skeletal muscle blood flow capacities as measured in isolated perfused rat hindquarters during maximal papaverine vasodilation (phase II). Two groups of male Sprague-Dawley rats were trained 5 days/wk for 6 wk with a program consisting of 6 bouts/day of 2.5-min runs at 60 m/min up a 15% grade with 4.5-min rest periods between bouts. After training, blood flows were measured with the radiolabeled microsphere technique (phase I) in pair-weighted sedentary control and exercise-trained rats while they ran at 60 m/min (0% grade). In phase II of the study, regional vascular flow capacities were determined at three perfusion pressures (30, 40, and 50 mmHg) in isolated perfused hindquarters of control and trained rats maximally vasodilated with papaverine. The results indicate that this exercise training program produces increases in the vascular flow capacity of fast-twitch glycolytic muscle tissue of rats. However, these changes were not apparent in the magnitude or distribution of muscle blood flow in conscious rats running at 60 m/min, since blood flows within and among muscles during exercise were the same in trained and control rats.  相似文献   

6.
Adult male and female Sprague-Dawley rats were trained on a horizontal treadmill for 0, 1, 3, 5, or 7 days/wk for 10 wk. Speed and duration were progressively increased over 5 wk to a maximum of 20 m/min for 1 h. Between weeks 9 and 10 of training, animals were placed on the nonmoving treadmill, and blood (500 microliters) was sampled via chronic venous cannulas 30 min before, 0, 10, 20, 30, 45, and 60 min during exercise, and 15, 30, 60, 90, and 120 min after exercise. In another study, resting animals in the various groups were injected with thyrotropin-releasing hormone (TRH; 2 micrograms/kg for males and 0.4 microgram/kg for females) to determine pituitary prolactin responsiveness. In males, exercise induced a significant increase in plasma prolactin levels, with the greatest increase observed in the least trained and the smallest increase in the most highly trained animals. Female rats displayed the opposite trend with the greatest increase in prolactin secretion observed in the highest trained and the smallest increase observed in the least trained animals. TRH induced similar increases in plasma prolactin in all male groups, whereas TRH-induced prolactin release was greatest in the highest trained and smallest in the least trained females. The reduced prolactin response in highly trained males may reflect their acclimation to repetitive exercise stress, whereas the enhanced response in the highly trained female rats appears to result from increased pituitary sensitivity to prolactin-releasing factors.  相似文献   

7.
We previously reported that low doses of d-tubocurarine attenuated glycogen loss in red muscles of rats during treadmill walking but that the initial hyperemia in the muscles was normal. The present studies were performed to 1) determine with electromyography (EMG) whether red muscle fiber activity is reduced in walking, curarized rats and 2) study muscle blood flow and glycogen loss during running with different doses of curare (dose response). At 0.5 min of treadmill walking (15 m/min), integrated EMG in vastus intermedius (VI) muscle was reduced by an average of 18% in curarized (60 micrograms/kg) rats, although blood flow (measured with microspheres) was the same as in saline control rats. Comparison of blood flows and glycogen loss in quadriceps muscles at 1 min of treadmill running (30 m/min) with different curare doses (20-60 micrograms/kg) demonstrated that red muscle glycogen loss was inversely related to curare dose but that blood flows in the same muscles were unaffected by curare. These findings provide support for our previous conclusion that at the initiation of low to moderate treadmill exercise, red muscle blood flow is not proportional to the activity or metabolism of the muscle fibers.  相似文献   

8.
To study the role of the central cholinergic system in pituitary prolactin (PRL) release during exercise we injected atropine (5 x 10(-7) mol) into the lateral cerebral ventricle of intact or adrenodemedullated (ADM) untrained rats, at rest or submitted to exercise on a treadmill (18 m x min(-1), 5% grade) until exhaustion. The rats were implanted with chronic jugular catheters for blood sampling and with unilateral intracerebroventricular (icv) cannulas placed in the right lateral ventricle. Blood prolactin concentrations were measured before and every 10 min after the start of exercise for a period of 60 min. After the animals started running, plasma prolactin levels rose rapidly in both normal and ADM rats, reaching near maximum at 10 min. Close to exhaustion (19.8 +/- 2.9 min for intact rats and 23.5 +/- 4.1 min for ADM) they were still high, remained increased until 30 min, and returned to preexercise levels at 40 min. Icv injections of atropine decreased the time to exhaustion by 67% in intact rats and by 96.2% in ADM and also reduced the exercise-induced PRL release in both intact (50%) and ADM rats (90%). The results showed that prolactin release induced by exercise was dependent on the exercise workload and could be observed as early as after 10 min of running, remaining increased until 30 min. These data indicate that adrenodemedullation does not affect prolactin secretion induced by exercise, although adrenodemedullated rats proved to be more sensitive to the reducing effect of central cholinergic blockade on their maximal capacity for exercise.  相似文献   

9.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

10.
This study determined whether exercise training in rats would prevent the accumulation of lipids and depressed glucose utilization found in hearts from diabetic rats. Diabetes was induced by intravenous streptozotocin (60 mg/kg). Trained diabetic rats were run on a treadmill for 60 min, 27 m/min, 10% grade, 6 days/wk for 10 wk. Training of diabetic rats had no effect on glycemic control but decreased plasma lipids. In vivo myocardial long-chain acylcarnitine, acyl-CoA, and high-energy phosphate levels were similar in sedentary control, sedentary diabetic, and trained diabetic groups. The levels of myocardial triacylglycerol were similar in sedentary control and diabetic rats but decreased in trained diabetic rats. Hearts were perfused with buffer containing diabetic concentrations of glucose (22 mM) and palmitate (1.2 mM). D-[U-14C] glucose oxidation rates (14CO2 production) were depressed in hearts from sedentary diabetic rats relative to sedentary control rats. Hearts from trained diabetic rats exhibited increased glucose oxidation relative to those of sedentary diabetic rats, but this improvement was below that of the sedentary control rats. [9,10(-3)H]palmitate oxidation rates (3H2O production) were identical in all three groups. These findings suggest that exercise training resulted in a partial normalization of myocardial glucose utilization in diabetic rats.  相似文献   

11.
The purpose of this study was threefold: 1) to determine whether untrained rats that refused to run on treadmill would climb on a laddermill (75 degrees incline); 2) to determine O2 consumption (VO2) in untrained rats as a function of laddermill climbing speed; and 3) to determine whether the circulatory response of untrained rats to laddermill climbing is similar to that previously reported for treadmill running at an equivalent VO2. Eighteen female Sprague-Dawley rats that would not perform on a treadmill as part of another study were used to measure VO2 as a function of laddermill speed (5-17 m/min). Data were obtained from all 18 rats; VO2 increased linearly as a function of laddermill speed (r = 0.83, y = 3.0 x + 63.2). Twenty-four female Sprague-Dawley rats that also refused to run on a treadmill were used to measure mean arterial pressure, heart rate, and blood flow distribution (with microspheres) during climbing at 5 and 10 m/min. These exercise intensities were metabolically equivalent to level treadmill running at 45 and 60 m/min (VO2 approximately 78 and 93 ml.min-1.kg-1, respectively). Of the 24 animals, 23 were willing to climb. Mean arterial pressures were higher (approximately 10%) during laddermill climbing than during equivalent treadmill running, but heart rates were the same. General blood flow distribution among muscles as a function of fiber type (with red muscles receiving higher flows) and between muscles and visceral tissues (muscle blood flow increased as a function of exercise intensity while visceral blood flows decreased) were similar to data for rats running on the level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Mitogenic response of T-lymphocytes to exercise training and stress   总被引:3,自引:0,他引:3  
The impact of exercise training and stress on the immune response was examined by measuring the mitogenic response of spleen lymphocytes to the T-cell mitogen concanavalin A (Con-A). Male Sprague-Dawley rats were divided into four groups: sedentary controls (n = 11), handled controls (n = 12), treadmill runners (n = 10), and voluntary runners (n = 11) housed in running wheels. The treadmill group ran at 22 m/min (0.8 mph) for 45 min, 5 days/wk for 8 wk. After the training period, spleen lymphocytes isolated from each rat were incubated with Con-A for 54 h, pulsed with radiolabeled thymidine for 18 h, and counted for tritium activity. Counts per minute per group (means +/- SE) were as follows: sedentary, 6,839 +/- 1,461; handled, 8,959 +/- 1,576; voluntary runners, 13,126 +/- 2,069; and treadmill runners, 18,950 +/- 5,975. One-way analysis of variance and Tukey's highly significant difference test found the counts per minute of the treadmill runners to be significantly different from the counts per minute of the sedentary animals. These results indicate that the responsiveness of spleen lymphocytes to Con-A increases as the level of stress and exercise increases.  相似文献   

13.
We have studied the time course of the decline in plasma catecholamines in the postexercise period in rats. Male Sprague-Dawley rats were run on the treadmill for 5 min at 31 m/min up a 15% grade. At the end of the exercise the rats were quickly anesthetized by intravenous injection of pentobarbital. Blood samples were collected as soon as possible (average of 43 s), at 2 and 7 min postexercise. Plasma epinephrine decreased from 0.79 +/- 0.09 ng/ml to 0.51 +/- 0.05 after 2 min and to 0.35 +/- 0.09 after 7 min. Plasma norepinephrine decreased from 0.89 +/- 0.16 ng/ml to 0.61 +/- 0.05 after 2 min and to 0.50 +/- 0.07 after 7 min. We also studied the effect of time of centrifugation with respect to time of blood collection on plasma catecholamines. If blood samples were kept on ice no significant change in plasma epinephrine occurred over a period of 1 h. A small (14%) but significant decrease in norepinephrine was observed after 15 and 60 min. These studies emphasize the importance of collecting rat blood samples as quickly as possible after the end of exercise. Catecholamines decline very quickly in the rat after intravenous pentobarbital anesthesia.  相似文献   

14.
Effect of moderate exercise on rat T-cells.   总被引:1,自引:0,他引:1  
The aim of this study was a detailed examination of the effects of moderate exercise on T-cells in adult male Wistar rats. The T-cell populations were compared in sedentary rats (C, n = 5) and in rats trained for 4 weeks on a treadmill (30-60 min.day-1, 6 days.week-1, 20-30 m.min-1) and sacrificed at rest (T-rest, n = 5). In the T-rest rats, there were higher percentages of CD4+CD8-, CD4-CD8+ and CD4-CD8- thymocytes (P < 0.05, P < 0.05 and P < 0.01 respectively) and of CD4-CD8+ splenocytes (P < 0.01), and a lower percentage of CD4-CD8+ cells in the lymph nodes (P < 0.01). Compared with T-rest or C rats, trained rats (n = 5) or untrained rats (n = 5) sacrificed immediately after a running session (60 min, 30 m.min-1) had a higher percentage of mononucleated cells CD4+CD8- in the blood (P < 0.05 and P < 0.01). Lastly, compared with C rats, rats (n = 5) sacrificed immediately after their 5th day of training (30-60 min.day-1) presented a higher total splenocyte population (P < 0.05) and greater in vitro production of T-cell growth factor (interleukin 2 + Interleukin 4) by splenocytes in response to a mitogen (P < 0.01). These results would indicate that moderate endurance training modifies the cellular composition of lymphoid organs, without impairing the in vitro functions of T-cells.  相似文献   

15.
Animal studies suggest that bone remodeling is under beta-adrenergic control via the sympathetic nervous system. To our knowledge, the impact of beta-agonist substances, at doping doses, has not been studied in adult rats. The purpose of this study was to examine the effects of salbutamol injections with or without treadmill exercise on trabecular and cortical bone in adult rats. Adult (36 wk of age) female Wistar rats (n = 56) were treated with salbutamol (3 mg.kg(-1).day(-1) sc, 5 days/wk) or vehicle (sham) with or without subsequent treadmill exercise (13 m/min, 60 min/day, 5 days/wk) for 10 wk. Tibial and femoral bone mineral density was analyzed by dual-energy X-ray absorptiometry. Metaphysic trabecular bone structure was analyzed by micro-CT at the time of the animals' death. Bone cell activities were assessed histomorphometrically. After 10 wk, the increase in bone mineral density was less in salbutamol-treated than in sham rats (+3.3% vs. +12.4%, P < 0.05), and trabecular parameters were altered and bone resorption was increased in salbutamol-treated rats compared with controls. The negative effect on bone architecture in salbutamol-treated rats persisted, even with treadmill exercise. These results confirm the deleterious effect of beta(2)-agonists on bone mass during chronic treatment and describe its effects on bone mechanical properties in adult rats. Bone loss occurred independently of a salbutamol-induced anabolic effect on muscle mass and was equally severe in sedentary and exercising rats, despite a beneficial effect of exercise on the extrinsic and intrinsic energy to ultimate strain. These bone effects may have important consequences in athletes who use salbutamol as a doping substance.  相似文献   

16.
目的:研究负重爬梯与有氧跑台运动对糖尿病大鼠学习记忆能力的改善效果并探索其可能分子机制。方法:40只雄性大鼠,随机分为正常对照组(NC)、糖尿病对照组(DC)、糖尿病负重爬梯组(DL)和糖尿病有氧跑台组(DA),以单次腹腔注射链脲佐菌素构建糖尿病大鼠模型。DL组在晚上进行负重爬梯训练,10次/组×3组/天,每次间歇2 min,6天/周×6周;DA组在同一时间进行20 m/min的跑台训练,30 min/d。于造模成功和运动干预结束后采用Morris水迷宫检测大鼠的学习记忆能力;第2次水迷宫测试结束后断颈处死大鼠,采用RT-QPCR法检测大鼠海马内脑源性神经营养因子(BDNF)、TRKB、CREB mRNA表达水平。结果:与NC组相比,DC组大鼠海马BDNF、CREB基因表达显著下降,学习记忆能力显著降低。与DC组相比,DL和DA组大鼠海马BDNF、CREB基因表达显著上调,学习能力显著提高;DL大鼠海马TrkB基因显著上调,大鼠空间记忆能力显著改善,而DA组大鼠海马TrkB基因无显著变化,大鼠空间记忆能力无改善,与DA组相比,DL组大鼠海马TRKB、CREB基因显著上调。结论:有氧跑台运动与负重爬梯运动介导BDNF/TrkB/CREB信号通路对糖尿病大鼠的学习能力均有促进作用,而负重爬梯运动对糖尿病大鼠记忆能力的改善优于有氧运动方式。  相似文献   

17.
Effect of glucose infusion on muscle malonyl-CoA during exercise   总被引:1,自引:0,他引:1  
Previous work in this laboratory has shown that muscle malonyl-CoA, the inhibitor of carnitine palmitoyltransferase I (CPT I), decreased during exercise. Hepatic malonyl-CoA content decreases when glucose availability decreases such as during fasting or when the glucagon-to-insulin ratio increases such as during prolonged exercise or in response to insulin deficiency. To investigate the effect of glucose infusion on muscle malonyl-CoA during exercise, male rats were anesthetized (pentobarbital via venous catheters) at rest or after running (21 m/min, 15% grade) for 30 or 60 min. During exercise rats were infused with either glucose (0.625 g/ml) or saline at a rate of 1.5 ml/h. Gastrocnemius muscles and liver samples were frozen at liquid nitrogen temperature. Muscle malonyl-CoA decreased from 1.24 +/- 0.06 to 0.69 +/- 0.05 nmol/g with glucose infusion and to 0.43 +/- 0.04 nmol/g with saline infusion during 60 min of exercise. In the liver, glucose infusion prevented the drop in malonyl-CoA. This indicates that glucose infusion attenuates the progressive decline in muscle malonyl-CoA and prevents the decline in liver malonyl-CoA during prolonged exercise.  相似文献   

18.
Gigli I  Bussmann LE 《Life sciences》2001,68(13):1505-1514
The effect of exercise on mitochondria respiration was studied in gastrocnemius muscle of ovariectomized rats, pseudopregnant rats, and estrous rats. The estrous cycles were followed by vaginal smears. Rats were made pseudopregnant (PSP) by 45 s cervical stimulation with a glass rod on the day of estrous. The treadmill protocol (21 m/min, 10 grade uphill) induced a significant decrease in state 3 oxygen consumption (oxidative phosphorylation) in estrous (0.26 +/- 0.02 vs. 0.49 +/- 0.05 microatoms O min(-1) mg protein(-1)) and ovariectomized rats (0.18 +/- 0.03 vs. 0.40 +/- 0.03 microatoms O min(-1) mg protein(-1)). In contrast, pseudopregnant and progesterone-treated ovariectomized rats did not decrease state 3 nor state 4 respiratory rates. These results show that the effect of exercise on mitochondria respiration does vary according to the hormonal status.  相似文献   

19.
The aim of this study was to investigate the effects of acute exercise on genomic damage in an animal model. Male adult Wistar rats were divided into the following groups: control and acute exercised (experimental). For this purpose, 15 animals were accustomed to running on a rodent treadmill for 15 min per day for 5 days (10–20 m min?1; 08 grade). After 4 days at rest, active animals ran on the treadmill (22 m min?1, 58 grade) till exhaustion. Cells from peripheral blood, liver, heart, and brain were collected after 0, 2, and 6 h after exercise. The results showed that acute exercise was able to induce genetic damage in peripheral blood cells after 2 and 6 h of exercise, whereas liver pointed out genetic damage for all periods evaluated. No genetic damage was induced either in brain or in heart cells. In conclusion, our results suggest that acute exercise could contribute to the genetic damage in peripheral blood and liver cells. It seems that liver is a sensitive organ to the genotoxic insult after acute exercise. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This study investigated the effect of physical training on muscle blood flow (BF) in rats with peripheral arterial insufficiency during treadmill running. Bilateral stenosis of the femoral artery of adult rats (300-350 g) was performed to reduce exercise hyperemia in the hindlimb but not limit resting muscle BF. Rats were divided into normal sedentary, acute stenosed (stenosed 3 days before the experiment), stenosed sedentary (limited to cage activity), and stenosed trained (run on a treadmill by a progressively intense program, up to 50-60 min/day, 5 days/wk for 6-8 wk). Hindlimb BF was determined with 85Sr- and 141Ce-labeled microspheres at a low (20 m/min) and high treadmill speed (30-40 m/min depending on ability). Maximal hindlimb BF was reduced to approximately 50% normal in the acute stenosed group. Total hindlimb BF (81 +/- 5 ml.min-1.100 g-1) did not change in stenosed sedentary animals with 6-8 wk of cage activity, but a redistribution of BF occurred within the hindlimb. Two factors contributed to a higher BF to the distal limb muscle of the trained animals. A redistribution BF within the hindlimb occurred in stenosed trained animals; distal limb BF increased to approximately 80% (P less than 0.001) of the proximal tissue. In addition, an increase in total hindlimb BF with training indicates that collateral BF has been enhanced (P less than 0.025). The associated increase in oxygen delivery to the relatively ischemic muscle probably contributed to the markedly improved exercise tolerance evident in the trained animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号