首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cardiomyopathy produced by the widely used anticancer drug adriamycin (ADR) is believed to be related to the production of reaction oxygen species and consumption of reduced glutathione (GSH) during redox cycling of the drug. Protection by vitamin E against the toxicity of ADR was studied in a model of compromised isolated hepatocytes, generated by physiological alterations in the concentration of cell calcium. A decrease in cell calcium concentration leads to a greater loss of endogenous alpha-tocopherol and enhances the intracellular hydrolysis of exogenous alpha-tocopheryl esters. With this model, vitamin E (alpha-tocopheryl succinate) at 25 microM protected the calcium-depleted hepatocytes against the toxicity of ADR, in association with greater cellular alpha-tocopherol content as compared to calcium-adequate cells. The incubation of calcium-adequate hepatocytes with increasing concentrations of alpha-tocopheryl succinate up to 200 microM demonstrated that maximal protection by vitamin E was directly dependent on the alpha-tocopherol content of the cells, regardless of the concentration of cell calcium. The viability of the cells was closely associated with the alpha-tocopherol-mediated maintenance of cellular protein thiols. Viability and protein thiol content of the cells were maximal at cellular alpha-tocopherol levels in the range 0.6-1.0 nmol/10(6) cells in both calcium-depleted and -adequate cells. It is suggested that the potential use of vitamin E as a protective agent against ADR toxicity in vivo be reevaluated with an emphasis placed on the threshold level of intracellular alpha-tocopherol in the critical target tissue.  相似文献   

2.
Cell calcium, vitamin E, and the thiol redox system in cytotoxicity   总被引:4,自引:0,他引:4  
The controversial role of extracellular Ca2+ in toxicity to in vitro hepatocyte systems is reviewed. Recent reports demonstrate that extracellular Ca2+-related cytotoxicity is dependent on Ca2+-influenced vitamin E (alpha-tocopherol) content of isolated hepatocytes. Based on a Ca2+-omission model of in vitro oxidative stress, the role of vitamin E in cytotoxicity is further explored. This model demonstrates the interdependence of the GSH redox system and vitamin E as protective agents during oxidative stress. Following chemical oxidant-induced depletion of intracellular GSH, cell morphology and viability are maintained by the continuous presence of cellular alpha-tocopherol above a threshold level of 0.6-1.0 nmol/10(6) cells. alpha-Tocopherol threshold-dependent cell viability is directly correlated with the prevention of the loss of cellular protein thiols in the absence of intracellular GSH. Potential mechanisms for this phenomenon are explored and include a direct reductive action of alpha-tocopherol on protein thiyl radicals, and the prevention of oxidation of protein thiols by scavenging of lipid peroxyl radicals by alpha-tocopherol. It is suggested that in light of the threshold phenomenon of vitamin E prevention of potentially severe oxidative stress-induced cytotoxicity, its use as a protective agent against an oxidative challenge in vivo should be reassessed.  相似文献   

3.
The depletion of cell calcium from isolated rat hepatocytes results in stimulated lipid peroxidation, loss of intracellular and mitochondrial GSH (reduced glutathione), and enhancement of both efflux and oxidation of GSH. These events are followed by cell injury and enhance the susceptibility of the cells to toxic chemicals. It is shown herein that an initial event in the generation of such injury is the depletion of cellular alpha-tocopherol. alpha-Tocopheryl succinate addition (25 microM) to the calcium-depleted cells markedly elevated the alpha-tocopherol content of the cells, inhibited the associated lipid peroxidation, and maintained intracellular GSH levels without affecting its efflux or redox status. This resulted in an enhanced formation of total glutathione after a 5-h incubation, which correlated with the alpha-tocopherol content of the cells, and was greater than that expected by a direct sparing action of vitamin E. Inhibition of hepatocyte glutathione biosynthesis by buthionine sulfoximine (0.5 mM) eliminated the enhancement of GSH formation by vitamin E. Analysis of endogenous and 35S-labelled precursors of glutathione biosynthesis by high-performance liquid chromatography demonstrated that the depletion of cellular alpha-tocopherol resulted in the efflux of glutathione precursors. It is concluded that cell injury associated with alpha-tocopherol depletion is partly the result of the efflux of glutathione precursors, and hence diminished biosynthesis and intracellular levels of GSH. These losses and resultant cell injury are preventable by maintenance of cellular alpha-tocopherol levels.  相似文献   

4.
Suspensions of freshly isolated rat hepatocytes and renal tubular cells contain high levels of reduced glutathione (GSH), which exhibits half-lives of 3-5 and 0.7-1 h, respectively. In both cells types the availability of intracellular cysteine is rate limiting for GSH biosynthesis. In hepatocytes, methionine is actively converted to cysteine via the cystathionine pathway, and hepatic glutathione biosynthesis is stimulated by the presence of methionine in the medium. In contrast, extracellular cystine can support renal glutathione synthesis; several disulfides, including cystine, are rapidly taken up by renal cells (but not by hepatocytes) and are reduced to the corresponding thiols via a GSH-linked reaction sequence catalyzed by thiol transferase and glutathione reductase (NAD(P)H). During incubation, hepatocytes release both GSH and glutathione disulfide (GSSG) into the medium; the rate of GSSG efflux is markedly enhanced during hydroperoxide metabolism by glutathione peroxidase. This may lead to GSH depletion and cell injury; the latter seems to be initiated by a perturbation of cellular calcium homeostasis occurring in the glutathione-depleted state. In contrast to hepatocytes, renal cells metabolize extracellular glutathione and glutathione S-conjugates formed during drug biotransformation to the component amino acids and N-acetyl-cysteine S-conjugates, respectively. In addition, renal cells contain a thiol oxidase acting on extracellular GSH and several other thiols. In conclusion, our findings with isolated cells mimic the physiological situation characterized by hepatic synthesis and renal degradation of plasma glutathione and glutathione S-conjugates, and elucidate some of the underlying biochemical mechanisms.  相似文献   

5.
Quinones are believed to be toxic by a mechanism involving redox cycling and oxidative stress. In this study, we have used 2,3-dimethoxy-1,4-naphthoquinone (2,3-diOMe-1,4-NQ), which redox cycles to the same degree as menadione, but does not react with free thiol groups, to distinguish between the importance of redox cycling and arylation of free thiol groups in the causation of toxicity to isolated hepatocytes. Menadione was significantly more toxic to isolated hepatocytes than 2,3-diOMe-1,4-NQ. Both menadione and 2,3-diOMe-1,4-NQ caused an extensive GSH depletion accompanied by GSSG formation, preceding loss of viability. Both compounds stimulated a similar increase in oxygen uptake in isolated hepatocytes and NADPH oxidation in microsomes suggesting they both redox cycle to similar extents. Further evidence for the redox cycling in intact hepatocytes was the detection of the semiquinone anion radicals with electron spin resonance spectroscopy. In addition we have, using the spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide), demonstrated for the first time the formation of superoxide anion radicals by intact hepatocytes. These radicals result from oxidation of the semiquinone by oxygen and further prove that both these quinones redox cycle in intact hepatocytes. We conclude that while oxidative processes may cause toxicity, the arylation of intracellular thiols or nucleophiles also contributes significantly to the cytotoxicity of compounds such as menadione.  相似文献   

6.
Acute treatment of mice with Na-o-phenylphenol or phenylbenzoquinone, an electrophilic metabolite of o-phenylphenol, resulted in differential depletion of contents of protein and nonprotein thiols in bladder, kidney and liver. Maximum decrease in the levels of protein and nonprotein reduced thiols was observed in bladder (by both agents) and was followed by kidney (by both agents) and liver (phenylbenzoquinone only). The reason for this differential changes in reduced thiol contents remains to be understood. The content of protein and nonprotein disulfides was higher in bladder of mice treated with Na-o-phenylphenol compared to that observed in untreated mice bladder. Phenyl 2,5'-p-benzoquinone mediated in vivo depletion of nonprotein and protein thiols suggests that Na-o-phenylphenol treatment may decrease in vivo thiols via the formation of phenylbenzoquinone. Increased disulfide formation is considered to represent an index of oxidative stress produced by chemical. Increases in the level of protein and nonprotein disulfides in bladder suggest as observed in this study that administration of Na-o-phenylphenol to mice produced oxidative stress in bladder. Products of redox cycling of xenobiotics are known to cause cellular toxicity via altering the homeostasis of thiol status. Therefore, it is concluded that decreases in protein thiol contents either via alkylation and/or oxidation of sulfhydryl groups of proteins and increases in disulfide contents presumably by products of redox cycling of Na-o-phenylphenol may play a role in Na-o-phenylphenol-induced cellular toxicity.  相似文献   

7.
In this study the Ca2+ ionophore, A23187, was used to determine the effects of disrupted Ca2+ homeostasis on cellular thiols. Isolated rat hepatocytes were incubated with varying concentrations of extracellular Ca2+ and A23187 to induce accumulation or loss of cellular Ca2+. These treatments resulted in loss of mitochondrial and cytosolic glutathione (GSH), loss of protein-thiols, and cell injury. This injury was dependent on the concentrations of ionophore and extracellular Ca2+. A correlation was found between cell injury and the loss of mitochondrial GSH, while the loss of cytosolic glutathione preceded both these events. The time course of protein-thiol loss appeared secondary to the loss of non-protein thiols. In the absence of extracellular Ca2+, the antioxidants alpha-tocopherol and diphenyl-p-phenylenediamine both totally prevented A23187-induced cell injury and loss of mitochondrial GSH, and thus protected the cells from the effects of mobilization of intracellular Ca2+. In the presence of extracellular Ca2+, cell injury as well as the loss of mitochondrial GSH were only partially prevented by antioxidant treatment. The mitochondrial Ca2+ channel blocker, ruthenium red, protected hepatocytes from A23187-induced injury in the absence of extracellular Ca2+. Leupeptin, an inhibitor of Ca2+-activated proteases, and dibucaine, a phospholipase inhibitor, did not affect cytotoxicity. Our results indicate that the level of mitochondrial GSH may be important for cell survival during ionophore-induced perturbation of cellular Ca2+ homeostasis.  相似文献   

8.
The physiological consequences of glutathione variations.   总被引:11,自引:0,他引:11  
S Uhlig  A Wendel 《Life sciences》1992,51(14):1083-1094
The major low molecular weight thiol inside cells, the tripeptide glutathione (GSH), is of importance for protection of the cell against oxidative challenge, for thiol homeostasis required to guarantee basic functions, and for defence mechanisms against xenobiotics. Since the pathophysiological significance of a perturbed GSH status in human disease is less clear, this review evaluates the consequences of in vivo variations of GSH. Owing to intracellular GSH concentrations above 2 mM depletion of GSH as such has little metabolic consequences unless an additional stress is superimposed. The kinetic properties of GSH-dependent enzymes imply that loss of up to 90% of intracellular GSH may still be compatible with cellular integrity. Mitochondrial GSH, which accounts for about 10% of total cellular GSH, may define the threshold beyond that toxicity commences. Thus, in cases of severe GSH-depletion a substitution of GSH as a therapeutic measure seems justified. Such a severe depletion of GSH has been described for some diseases such as liver dysfunction, AIDS or pulmonary fibrosis.  相似文献   

9.
The parasitic protozoa Trypanosoma brucei utilizes a novel cofactor (trypanothione, T(SH)2), which is a conjugate of GSH and spermidine, to maintain cellular redox balance. gamma-Glutamylcysteine synthetase (gamma-GCS) catalyzes the first step in the biosynthesis of GSH. To evaluate the importance of thiol metabolism to the parasite, RNAi methods were used to knock down gene expression of gamma-GCS in procyclic T. brucei cells. Induction of gamma-GCS RNAi with tetracycline led to cell death within 4-6 days post-induction. Cell death was preceded by the depletion of the gamma-GCS protein and RNA and by the loss of the cellular pools of GSH and T(SH)2. The addition of GSH (80 microM) to cell cultures rescued the RNAi cell death phenotype and restored the intracellular thiol pools to wild-type levels. Treatment of cells with buthionine sulfoximine (BSO), an enzyme-activated inhibitor of gamma-GCS, also resulted in cell death. However, the toxicity of the inhibitor was not reversed by GSH, suggesting that BSO has more than one cellular target. BSO depletes intracellular thiols to a similar extent as gamma-GCS RNAi; however, addition of GSH did not restore the pools of GSH and T(SH)2. These data suggest that BSO also acts to inhibit the transport of GSH or its peptide metabolites into the cell. The ability of BSO to inhibit both synthesis and transport of GSH likely makes it a more effective cytotoxic agent than an inhibitor with a single mode of action. Finally the potential for the T(SH)2 biosynthetic enzymes to be regulated in response to reduced thiol levels was studied. The expression levels of ornithine decarboxylase and of S-adenosylmethionine decarboxylase, two essential enzymes in spermidine biosynthesis, remained constant in induced gamma-GCS RNAi cell lines.  相似文献   

10.
Incubation of isolated rat hepatocytes with tert-butylhydroperoxide resulted in marked cytotoxicity preceded by intracellular glutathione depletion and extensive lipid peroxidation. Addition of antioxidants delayed, but did not prevent, this toxicity. A significant decrease in protein-free sulfhydryl groups also occurred in the presence of tert-butylhydroperoxide; direct oxidation of protein thiols and mixed disulfide formation with glutathione were responsible for this decrease. The involvement of protein thiol depletion in tert-butylhydroperoxide-induced cytotoxicity is suggested by our observation that administration of dithiothreitol, which caused re-reduction of the oxidized sulfhydryl groups and mixed disulfides, efficiently protected the cells from toxicity. Moreover, depletion of intracellular glutathione by pretreatment of the hepatocytes with diethyl maleate accelerated and enhanced the depletion of protein thiols induced by tert-butylhydroperoxide and potentiated cell toxicity even in the absence of lipid peroxidation.  相似文献   

11.
The extent of chemically induced injury to isolated hepatocytes has been previously shown to depend on the content of alpha-tocopherol in the cells, the levels of which are influenced by the concentration of extracellular calcium. Investigations into the effect of calcium on the alpha-tocopherol content of nonchemically exposed cells demonstrated that incubation of isolated hepatocytes in a calcium-deficient medium decreased cell calcium content to 10% of initial levels, and resulted in the depletion of endogenous alpha-tocopherol. This loss in alpha-tocopherol was not accounted for by alpha-tocopherylquinone formation. After supplementation of the cell incubation medium with alpha-tocopheryl succinate, the decreased cell calcium content was associated with higher levels of cellular alpha-tocopherol than in calcium-adequate cells. This was the result of greater intracellular hydrolysis of the tocopheryl ester in the calcium-depleted cells, and not an effect of extracellular calcium concentration on the uptake of alpha-tocopheryl succinate into the cells or on the extracellular hydrolysis of the ester. Uptake studies indicated a much greater achievable level of alpha-tocopherol in hepatocytes after incubation with alpha-tocopherol than with the alpha-tocopheryl ester. These data provide substantial support for the hypotheses that the content of extracellular calcium per se is not the determinant in toxic injury to hepatocytes, but that cell calcium content affects the intracellular metabolism of alpha-tocopherol and its esters, which may subsequently govern the outcome of a toxic challenge.  相似文献   

12.
Hepatocytes freshly isolated from diethylmaleate-treated rats exhibited a markedly decreased concentration of reduced glutathione (GSH) which increased to the level present in hepatocytes from nontreated rats upon incubation in a complete medium. When bromobenzene was present in the medium, however, this increase in GSH concentration upon incubation was reversed and a further decrease occurred that resulted in GSH depletion and cell death. This was prevented by metyrapone, an inhibitor of the cytochrome P-450-linked metabolism of bromobenzene. Bromobenzene metabolism in hepatocytes was accompanied by a fraction of metabolites covalently binding to cellular proteins. The size of this fraction, relative to the amount of total metabolites, was increased in hepatocytes isolated from diethylmaleate-treated rats and in hepatocytes from phenobarbital-treated rats incubated with bromobenzene in the presence of 1,2-epoxy-3,3,3-trichloropropane, an inhibitor of microsomal epoxide hydrase which, however, also acted as a GSH-depleting agent. In addition, the metabolism of bromobenzene by hepatocytes was associated with a marked decrease in various coenzyme levels, including coenzyme A, NAD(H), and NADP(H). Cysteine and cysteamine inhibited the formation of protein-bound metabolites of bromobenzene in microsomes, but did not prevent bromobenzene toxicity in hepatocytes when added at higher concentrations to the incubation medium (containing 0.4 mm cysteine). Methionine, on the other hand, did not cause a significant effect on bromobenzene metabolism in microsomes and prevented toxicity in hepatocytes, presumably by stimulating GSH synthesis and thereby decreasing the amount of reactive metabolites available for interaction with other cellular nucleophiles. It is concluded that, in contrast to hepatocytes with normal levels of GSH, hepatocytes from diethylmaleate-treated rats were sensitive to bromobenzene toxicity under our incubation conditions. In this system, bromobenzene metabolism led to GSH depletion and was associated with a progressive decrease in coenzyme A and nicotinamide nucleotide levels and a moderate increase in the formation of metabolites covalently bound to protein. Methionine was a potent protective agent which probably acted by enhanced GSH synthesis via the formation of cystathionine.  相似文献   

13.
Antimycin A, KCN, and 1-methyl-4-phenylpyridinium ion (MPP+) all produced a marked depletion of cellular GSH levels in freshly isolated hepatocytes. This effect was consistently observed before the onset of cytotoxicity and seemed to be correlated with the loss of cellular ATP induced by these mitochondrial poisons. Concentrations of GSSG remained unchanged both intracellularly and extracellularly, indicating that oxidation was not involved in the events leading to GSH depletion. Approximately 40% of the decrease of intracellular GSH was accounted for by efflux of this tripeptide, assessed by increased formation of cysteinyl-glutathione when hepatocytes were incubated in the presence of 0.2 mM cystine. Therefore, an overall loss of glutathione was observed during incubations with all three inhibitors of mitochondrial function. Addition of 10 mM fructose to the incubation media substantially protected against GSH depletion caused by antimycin A, KCN, and MPP+. These results indicate that energy-dependent mechanisms are involved in the maintenance of intracellular GSH levels, and suggest that GSH depletion may be a general phenomenon associated with impairment of mitochondrial function.  相似文献   

14.
The activity of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (GPD), in vertebrate cells, was modulated by a change in the intracellular thiol:disulfide redox status. Human lung carcinoma cells (A549) were incubated with 1-120 mM H2O2, 1-120 mM t-butyl hydroperoxide, 1-6 mM ethacrynic acid, or 0.1-10 mM N-ethylmaleimide for 5 min. Loss of reduced protein thiols, as measured by binding of the thiol reagent iodoacetic acid to GPD, and loss of GPD enzymatic activity occurred in a dose-dependent manner. Incubation of the cells, following oxidative treatment, in saline for 30 min or with 20 mM dithiothreitol (DTT) partially reversed both changes in GPD. The enzymatic recovery of GPD activity was observed either without addition of thiols to the medium or by incubation of a sonicated cell mixture with 2 mM cysteine, cystine, cysteamine, or glutathione (GSH); GSSG had no effect. Treatment of cells with buthionine sulfoximine (BSO) to decrease cellular GSH by varying amounts caused a dose-related increase in sensitivity of GPD activity to inactivation by H2O2 and decreased cellular ability for subsequent recovery. GPD responded in a similar fashion with oxidative treatment of another lung carcinoma cell line (A427) as well as normal lung tissue from human and rat. These findings indicate that the cellular thiol redox status can be important in determining GPD enzymatic activity.  相似文献   

15.
Rat liver microsomes and isolated rat hepatocytes metabolized bromobenzene to watersoluble and protein-bound metabolites. The latter fraction—which normally accounted for 2–5% of the total products—was slightly increased when 1,2-epoxy-3,3,3-trichloropropane, an inhibitor of microsomal epoxide hydrase, was added to the microsomal incubate. The presence of reduced glutathione (GSH), on the other hand, caused an almost complete inhibition of the formation of protein-bound metabolites from bromobenzene in microsomes. The rates of bromobenzene metabolism were similar in liver microsomes and hepatocytes, and increased severalfold after phenobarbital pretreatment of the rats. Metyrapone and SKF 525-A were inhibitory in both systems. Bromobenzene metabolism in hepatocytes isolated from phenobarbital-treated rats was associated with a rapid and marked decrease in the level of intracellular GSH. When the cells were incubated in a complete medium, however, the decrease in GSH leveled off at about 40% of the original concentration and there was no evidence of any accelerated rate of cell death even when the incubation with bromobenzene was prolonged to 10 h. This was most probably due to resynthesis of GSH by the hepatocytes, which partly compensated for the loss of this thiol associated with bromobenzene metabolism. Accordingly, in a deficient medium (lacking amino acids), the cytotoxic effect of bromobenzene metabolism was pronounced—less than 5% of the zerotime level of GSH and only 25% cell viability remaining after 5 h of incubation. It is concluded that the intracellular level of GSH is of major importance in regard to the cytotoxic effect of bromobenzene metabolism and that hepatocytes incubated in a complete medium are protected against toxicity by their ability to resynthesize this thiol.  相似文献   

16.
Incubation of isolated rat hepatocytes with tert-butylhydroperoxide resulted in marked cytotoxicity preceded by intracellular glutathione depletion and extensive lipid peroxidation. Addition of antioxidants delayed, but did not prevent, this toxicity. A significant decrease in protein-free sulfhydryl groups also, occurred in the presence of tert-butylhydroperoxide; direct oxidation of protein thiols and mixed disulfide formation with glutathione were responsible for this decrease. The involvement of protein thiol depletion in tert-butylhydroperoxide–induced cytotoxicity is suggested by our observation that administration of dithiothreitol, which caused re-reduction of the oxidized sulfhydryl groups and mixed disulfides, efficiently protected the cells from toxicity. Moreover, depletion of intracellular glutathione by pretreatment of the hepatocytes with diethyl maleate accelerated and enhanced the depletion of protein thiols induced by tert-butylhydroperoxide and potentiated cell toxicity even in the absence of lipid peroxidation.  相似文献   

17.
Piperine (1-Piperoyl piperidine) is the major alkaloid of black and long peppers used widely in various systems of traditional medicine. The present study investigates the toxicity of piperine via free-radical generation by determining the degree of lipid peroxidation and cellular thiol status in the rat intestine. Lipid peroxidation content, measured as thiobarbituric reactive substances (TBARS), was increased with piperine treatment although conjugate diene levels were not altered. A significant increase in glutathione levels was observed, whereas protein thiols and glutathione reductase activity were not altered. The study suggests that increased TBARS levels may not be a relevant index of cytotoxicity, since thiol redox was not altered, but increased synthesis transport of intracellular GSH pool may play an important role in cell hemostasis and requires further study.  相似文献   

18.
The metabolism and toxicity of formaldehyde (CH2O) in isolated rat hepatocytes was found to be dependent upon the intracellular concentration of glutathione (GSH). Using hepatocytes depleted of GSH by treatment with diethyl maleate (DEM), the rate of CH2O (5.0 mM) disappearance was significantly decreased. Formaldehyde decreased the concentration of GSH in hepatocytes, probably by the extrusion of the CH2O-GSH adduct, S-hydroxymethylglutathione. Formaldehyde toxicity was potentiated in cells pretreated with 1.0 mM DEM as measured by the loss of membrane integrity (NADH stimulation of lactate dehydrogenase (LDH) activity) and an increase in lipid peroxidation (formation of thiobarbituric acid-reactive compounds). This potentiation of toxicity was both CH2O concentration-dependent and time-dependent. There was an excellent correlation between the increase in lipid peroxidation and the decrease in cell viability. L-Methionine (1.0 mM) both protected the cells from toxicity caused by the combination of 8.0 mM CH2O and 1.0 mM DEM and increased the cellular GSH concentration. The antioxidants, ascorbate, butylated hydroxytoluene (BHT) and alpha-tocopherol (10, 25 and 125 microM), all exhibited dose-dependent protection against toxicity produced by 8.0 mM CH2O and 1.0 mM DEM. At toxic concentrations of CH2O (10.0-13.0 mM), administered by itself, lipid peroxidation did not increase concomitantly with the decrease in cell viability and the addition of antioxidants (125 microM) did not influence CH2O toxicity. These results suggest that CH2O toxicity in GSH-depleted hepatocytes may be mediated by free radicals as a result of the effect of CH2O on a critical cellular pool of GSH. However, cells with normal concentrations of GSH are damaged by CH2O by a different mechanism.  相似文献   

19.
The role of thiols in cellular response to radiation and drugs   总被引:3,自引:0,他引:3  
Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole. In conclusion, we propose an altered thiol model which includes a mechanism for thiol involvement in the aerobic radiation response of cells. This mechanism involves both thiol-linked hydrogen donation to oxygen radical adducts to produce hydroperoxides followed by a GSH peroxidase-catalyzed reduction of the hydroperoxides to intermediates entering into metabolic pathways to produce the original molecule.  相似文献   

20.
Freshly isolated rat hepatocytes suspensions were incubated under an atmosphere of 95% O2/5% CO2 or 95% air/5% CO2 for 10 h. Cell injury and death were observed between the 6th and 10th hour of incubation, only in 95% O2-treated hepatocytes. Oxygen-induced injury was preceded by marked lipid peroxidation and rapid depletion of cellular alpha tocopherol content. The exogenous administration of unesterified alpha tocopherol (T, 25 microM) resulted in a 20-fold increase in cellular T levels (4.2 nmol/10(6) cells) but failed to protect these hepatocytes from the toxic effects of oxygen. In contrast, hepatocytes incubated with 25 microM of the succinate ester of alpha tocopherol (TS) contained both TS (3.0 nmol/10(6) cells) and T (1.4 nmol/10(6) cells) and were completely protected from the toxic effects of oxygen, including the induction of lipid peroxidation. These findings suggest that TS cytoprotection results not from the cellular accumulation of T but rather, from cellular TS accumulation. The data also indicate that the depletion of cellular T is not the critical cellular event that is responsible for hyperoxia (reactive oxygen intermediate)-induced injury. Instead, it appears that TS possesses unique cytoprotective properties that intervene in the critical cellular events that lead to oxygen toxicity. Thus, vitamin E succinate and our hyperoxic hepatocyte preparation provide a promising new model system for the study and prevention of tissue damage resulting from the toxic effects of hyperoxia and reactive oxygen intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号