首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used 8-methoxypsoralen to probe the chromatin structure of mammalian cells in situ while they repair pyrimidine dimers or bulky lesions in DNA. We observed that excision repair of these DNA lesions is accompanied by periodic alterations of chromatin organization. In parallel, fluctuations of the rates of repair patch synthesis accompanied these structural changes. Taking advantage of the accessibility of free DNA domains for psoralen intercalation, we have developed a technique to quantitatively isolate the micrococcal nuclease-sensitive, free DNA fraction of native bulk chromatin. We have determined the location of newly synthesized repair patches relative to free DNA domains as a function of repair time. Extensive rearrangements of repair patches from these domains into micrococcal nuclease-resistant DNA were observed. Our results indicate that periodic changes of chromatin organization associated with rearrangement of repair patches accompany the process of excision repair in mammalian cells.  相似文献   

2.
3.
4.
Measurement of DNA damage and repair at the nucleotide level in intact cells has provided compelling evidence for the molecular details of these events as they occur in intact organisms. Furthermore, these measurements give the most accurate picture of the rates of repair in different structural domains of DNA in chromatin. In this report, we describe two methods currently used in our laboratories to map DNA lesions at (or near) nucleotide resolution in yeast cells. The low-resolution method couples damage-specific strand breaks in DNA with indirect end-labeling to measure DNA lesions over a span of 1.5 to 2 kb of DNA sequence. The resolution of this method is limited by the resolution of DNA length measurements on alkaline agarose gels (about +/-20 bp on average). The high-resolution method uses streptavidin magnetic beads and special biotinylated oligonucleotides to facilitate end-labeling of DNA fragments specifically cleaved at damage sites. The latter method maps DNA damage sites at nucleotide resolution over a shorter distance (<500 bp), and is constrained to the length of DNA resolvable on DNA sequencing gels. These methods are used in tandem for answering questions regarding DNA damage and repair in different chromatin domains and states of gene expression.  相似文献   

5.
When repair meets chromatin: First in series on chromatin dynamics   总被引:9,自引:0,他引:9       下载免费PDF全文
In eukaryotic cells, the inheritance of both the DNA sequence and its organization into chromatin is critical to maintain genome stability. This maintenance is challenged by DNA damage. To fully understand how the cell can tolerate genotoxic stress, it is necessary to integrate knowledge of the nature of DNA damage, its detection and its repair within the chromatin environment of a eukaryotic nucleus. The multiplicity of the DNA damage and repair processes, as well as the complex nature of chromatin, have made this issue difficult to tackle. Recent progress in each of these areas enables us to address, both at a molecular and a cellular level, the importance of inter-relationships between them. In this review we revisit the ‘access, repair, restore’ model, which was proposed to explain how the conserved process of nucleotide excision repair operates within chromatin. Recent studies have identified factors potentially involved in this process and permit refinement of the basic model. Drawing on this model, the chromatin alterations likely to be required during other processes of DNA damage repair, particularly double-strand break repair, are discussed and recently identified candidates that might perform such alterations are highlighted.  相似文献   

6.
Epigenetic regulation of genomic integrity   总被引:1,自引:0,他引:1  
Deem AK  Li X  Tyler JK 《Chromosoma》2012,121(2):131-151
Inefficient and inaccurate repair of DNA damage is the principal cause of DNA mutations, chromosomal aberrations, and carcinogenesis. Numerous multiple-step DNA repair pathways exist whose deployment depends on the nature of the DNA lesion. Common to all eukaryotic DNA repair pathways is the need to unravel the compacted chromatin structure to facilitate access of the repair machinery to the DNA and restoration of the original chromatin state afterward. Accordingly, our cells utilize a plethora of coordinated mechanisms to locally open up the chromatin structure to reveal the underlying DNA sequence and to orchestrate the efficient and accurate repair of DNA lesions. Here we review changes to the chromatin structure that are intrinsic to the DNA damage response and the available mechanistic insight into how these chromatin changes facilitate distinct stages of the DNA damage repair pathways to maintain genomic stability.  相似文献   

7.
The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response.  相似文献   

8.
Nucleotide excision repair in chromatin and the right of entry   总被引:3,自引:0,他引:3  
Gong F  Kwon Y  Smerdon MJ 《DNA Repair》2005,4(8):884-896
  相似文献   

9.
By some estimates, a eukaryotic cell must repair up to 10,000 DNA lesions per cell cycle to counteract endogenous sources of DNA damage. Exposure to environmental toxins, UV sources, or other radiations only increases this enormous number. Failure to repair such lesions can lead to a deleterious mutation rate, genomic instability, or cell death. The timely and efficient repair of eukaryotic DNA damage is further complicated by the realization that DNA lesions must be detected and repaired in the context of chromatin with its complex organization within the nucleus. Numerous studies have shown that chromatin packaging can inhibit nearly all repair pathways, and recent work has defined specific mechanisms that facilitate DNA repair within the chromatin context. In this review, we provide a broad overview of chromatin regulatory mechanisms, mainly at the nucleosomal level, and then focus on recent work that elucidates the role of chromatin structure in regulating the timely and efficient repair of DNA double-strand breaks (DSBs).Although we tend to worry the most about environmental sources of DNA damage (e.g., chemical agents, UV radiation, ionizing radiation), it seems likely that much of the DNA repair machinery has evolved to contend with DNA lesions generated by the by-products of cellular metabolism—reactive oxygen species, endogenous alkylating agents, and DNA single- and double-strand breaks resulting from collapsed DNA replication forks or from oxidative destruction of deoxyribose residues (Lindahl and Wood 1999; Lindahl 2000). To combat the diversity of DNA lesions, cells have evolved a complex DNA damage response (DDR) that can engage many different DNA repair pathways, including nucleotide excision repair (NER), base excision repair (BER), DNA mismatch repair (MMR), single-strand annealing (SSA), nonhomologous end joining (NHEJ), and homologous recombination (HR). In eukaryotic cells, each of these repair pathways function in the context of a nucleoprotein structure, chromatin, which can potentially occlude DNA lesions from the repair machinery, and thus can influence the efficiency of repair. Early studies that focused on the response to UV damage, led to the access/repair/restore (ARR) model for repair of DNA lesions in chromatin (Green and Almouzni 2002). A central theme of this model is that chromatin inhibits the repair process, and thus it must be disrupted before or during the repair process, and then chromatin structures must be faithfully restored at the conclusion. What has become clear in the past few years, however, is that chromatin organization also serves a positive role in the DDR, to “prime” DNA repair events, functioning as a regulatory/integration platform that ensures that DNA repair is coordinated with other cellular events (Fig. 1). Here we focus on the repair of DNA double-strand breaks (DSBs), centering on the various mechanisms that facilitate this essential repair event within a chromatin context with a particular emphasis on the nucleosomal level. We envision that the concepts and themes discussed here will also be pertinent to other repair pathways, as discussed in several recent reviews (Adam and Polo 2012; Czaja et al. 2012; Lans et al. 2012; Odell et al. 2013).Open in a separate windowFigure 1.Access/prime/repair/restore model for the role of chromatin in the DDR. Chromatin remodeling and histone modification enzymes regulate both the accessibility of the lesion to repair factors as well as providing a platform for signaling repair events to other cellular processes. See text for details.  相似文献   

10.
Eukaryotic cells have developed conserved mechanisms to efficiently sense and repair DNA damage that results from constant chromosomal lesions. DNA repair has to proceed in the context of chromatin, and both histone-modifiers and ATP-dependent chromatin remodelers have been implicated in this process. Here, we review the current understanding and new hypotheses on how different chromatin-modifying activities function in DNA repair in yeast and metazoan cells.  相似文献   

11.
The eukaryotic cell is faced with more than 10 000 various kinds of DNA lesions per day. Failure to repair such lesions can lead to mutations, genomic instability, or cell death. Therefore, cells have developed 5 major repair pathways in which different kinds of DNA damage can be detected and repaired: homologous recombination, nonhomologous end joining, nucleotide excision repair, base excision repair, and mismatch repair. However, the efficient repair of DNA damage is complicated by the fact that the genomic DNA is packaged through histone and nonhistone proteins into chromatin, a highly condensed structure that hinders DNA accessibility and its subsequent repair. Therefore, the cellular repair machinery has to circumvent this natural barrier to gain access to the damaged site in a timely manner. Repair of DNA lesions in the context of chromatin occurs with the assistance of ATP-dependent chromatin-remodeling enzymes and histone-modifying enzymes, which allow access of the necessary repair factors to the lesion. Here we review recent studies that elucidate the interplay between chromatin modifiers / remodelers and the major DNA repair pathways.  相似文献   

12.
13.
Thoma F 《The EMBO journal》1999,18(23):6585-6598
Nucleotide excision repair (NER) and DNA repair by photolyase in the presence of light (photoreactivation) are the major pathways to remove UV-induced DNA lesions from the genome, thereby preventing mutagenesis and cell death. Photoreactivation was found in many prokaryotic and eukaryotic organisms, but not in mammals, while NER seems to be universally distributed. Since packaging of eukaryotic DNA in nucleosomes and higher order chromatin structures affects DNA structure and accessibility, damage formation and repair are coupled intimately to structural and dynamic properties of chromatin. Here, I review recent progress in the study of repair of chromatin and transcribed genes. Photoreactivation and NER are discussed as examples of how an individual enzyme and a complex repair pathway, respectively, access DNA lesions in chromatin and how these two repair processes fulfil complementary roles in removal of UV lesions. These repair pathways provide insight into the structural and dynamic properties of chromatin and suggest how other DNA repair processes could work in chromatin.  相似文献   

14.
DNA damage in chromatin comes in many forms, including single base lesions that induce base excision repair (BER). We and others have shown that the structural location of DNA lesions within nucleosomes greatly influences their accessibility to repair enzymes. Indeed, a difference in the location of uracil as small as one-half turn of the DNA backbone on the histone surface can result in a 10-fold difference in the time course of its removal in vitro. In addition, the cell has evolved several interdependent processes capable of enhancing the accessibility of excision repair enzymes to DNA lesions in nucleosomes, including post-translational modification of histones, ATP-dependent chromatin remodeling and interchange of histone variants in nucleosomes. In this review, we focus on different factors that affect accessibility of BER enzymes to nucleosomal DNA.  相似文献   

15.
16.
Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.  相似文献   

17.
18.
Inherited or acquired defects in detecting, signalling or repairing DNA damage are associated with various human pathologies, including immunodeficiencies, neurodegenerative diseases and various forms of cancer. Nuclear DNA is packaged into chromatin and therefore the true in vivo substrate of damaged DNA occurs within the context of chromatin. Our work aims to decipher the mechanisms by which cells detect DNA damage and signal its presence to the DNA-repair and cell-cycle machineries. In particular, much of our work has focused on DNA DSBs (double-strand breaks) that are generated by ionizing radiation and radiomimetic chemicals, and which can also arise when the DNA replication apparatus encounters other DNA lesions. In the present review, we describe some of our recent work, as well as the work of other laboratories, that has identified new chromatin proteins that mediate DSB responses, control SDB processing or modulate chromatin structure at DNA-damage sites. We also aim to survey several recent advances in the field that have contributed to our understanding of how particular histone modifications and involved in DNA repair. It is our hope that by understanding the role of chromatin and its modifications in promoting DNA repair and genome stability, this knowledge will provide opportunities for developing novel classes of drugs to treat human diseases, including cancer.  相似文献   

19.
20.
Cells counteract the adverse effects of chromosome breakage by activating the DNA damage response (DDR), which entails a coordinated series of events that regulate cell cycle progression and repair of DNA lesions. The packaging of genomic DNA into condensed, often inaccessible chromatin severely complicates efficient DNA damage repair in living cells. Recent studies implicate a large number of chromatin-modifying enzymes in the DDR, suggesting a stepwise model in which chromatin is continually reconfigured to accommodate the association and action of repair factors during the different stages of the DDR. Emerging evidence suggests that the histone ubiquitin ligases RNF8/RNF168 act in concert with ATP-dependent chromatin remodelling enzymes to orchestrate the signalling and repair of DNA lesions in specific chromatin topologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号