首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract: A gas chromatographic-mass fragmentographic (GC-MF) procedure is described for the simultaneous quantitation of 3,4-dihydroxyphenyl-ethyleneglycol (DHPG) and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) in brain tissue and plasma. DHPG and MHPG were assayed as their respective acetyl-trifluoroacyl esters, using [2H2]DHPG and [2H3]MHPG as internal standards. Assay sensitivities of at least 1 ng per sample were attainable for the quantitation of free glycols, whereas for determination of total DHPG, assay sensitivity was 2.5 ng. Whole rat brain total (99.2 ±4.11 ng/g) and free (13.0 ± 1.14 ng/g) DHPG concentrations were similar to respective total (86.0 ± 3.70 ng/g) and free (12.3 ± 0.41 ng/g) MHPG levels. Total DHPG concentrations exceeded total MHPG levels in hypothalamus (3.0:1), midbrain (1.4:1), pons plus medulla (1.3:1), and hippocampus (1.5:1), whereas in other brain regions the levels of these metabolites were similar. In plasma, however, total DHPG levels were only 20% as high as MHPG concentrations. In mouse brain, DHPG and MHPG occurred almost entirely in free form (>90%), but total DHPG levels were only 50% as high as respective MHPG concentrations. These results emphasize the substantial formation of DHPG compared with MHPG in rat and mouse brain and suggest that DHPG formation and eMux may be of equal or greater importance than MHPG in the metabolic clearance of CNS norepinephrine in some species.  相似文献   

2.
Abstract: To assess the postmortem stability of brain 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) and 3,4-dihydroxyphenylethyleneglycol (DHPG) levels, groups of rats and mice were killed by cervical dislocation and left at either 21° or 4°C for intervals of up to 24 h until removal and freezing of whole brain. Whole brain free and total MHPG and DHPG levels were determined simultaneously by gas chromatography-mass fragmentography (GC-MF). By 2 h after death, statistically significant decrements occurred in rat brain free DHPG (20%), total MHPG (21%), and total DHPG (11%) at 4°C, but free MHPG increased significantly (50%) compared with controls. At 21°C, rat brain total MHPG increased compared with controls at 2 h (15%) but decreased at 4 h (15%) and 8 h (15%), whereas free MHPG levels were increased at these times. Although brain total and conjugated DHPG levels showed little change, free DHPG levels were reduced at all times. In mouse brain no significant changes occurred in free MHPG and DHPG by 24 h at 4°C. At 21°C, mouse brain DHPG levels decreased whereas MHPG concentrations increased over the 8-h period of study. These findings demonstrate the occurrence of significant postmortem time- and temperature-dependent changes in brain MHPG and DHPG concentrations and indicate caution in the interpretation of changes in these metabolites in studies employing human postmortem brain tissue.  相似文献   

3.
Abstract: A gas chromatographic-mass spectrometric assay, which allowed simultaneous measurement of 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylglycol (DHPG), was used to show that the concentration of MHPG in primate CNS far exceeded that of DHPG and that both metabolites were mainly in the unconjugated form. In rat brain, DHPG concentration was generally higher than that of MHPG, and both existed predominantly as conjugates. Rat and primate plasma contained more MHPG than DHPG. In plasma of primates but not of rats, higher proportions of the metabolites were conjugated, compared to those in brain. Significant correlations existed between MHPG and DHPG in rat brain, monkey brain, human plasma, and both monkey CSF and plasma. In monkeys, a significant CSF-plasma correlation was found for MHPG, but not for DHPG. Acute administration of piperoxane raised rat brain MHPG and DHPG concentration; desipramine prevented this rise in DHPG, but not in MHPG. Desipramine alone decreased DHPG, but not MHPG, concentration. Piperoxane increased monkey brain MHPG, but not DHPG, concentration. These data suggest that DHPG is a valuable metabolite to measure when assessing norepinephrine metabolism in the rat. Under certain conditions, measurement of rat brain MHPG and DHPG may provide information concerning the site of norepinephrine metabolism. However, in primates the importance of monitoring DHPG, in addition to MHPG, is uncertain.  相似文献   

4.
Abstract: We have investigated the effects of 3,4-dihydroxyphenylalanine l -DOPA) and its deuterated analogue on the concentrations of alcoholic metabolites of catecholamines in rat brain by means of gas chromatography/mass spectrometry with selected-ion monitoring. Whole brain concentrations of the two neutral norepinephrine metabolites, 3-methoxy-4-hydroxyphenylethylene-glycol (MHPG) and 3,4-dihydroxyphenylethyleneglycol (DHPG), were significantly increased in a dose-dependent manner by a single intraperitoneal injection of l -DOPA. Both MHPG and DHPG, as well as the corresponding dopamine metabolites, reached a maximum 1 h after injection. Brain MHPG and DHPG concentrations were elevated by 78 and 134%, respectively, 1 h after injection of 150 mg/kg l -DOPA. Analyses of discrete brain regions revealed that concentrations of the norepinephrine metabolites were elevated uniformly in all regions, except that MHPG showed a greater increase in the cerebellum than in other regions. The latter result appeared to be explained by the finding that 52% of the total MHPG in the cerebellum was unconjugated (compared to 15% in the whole brain). l -DOPA caused a proportionately greater increase in free MHPG than in total MHPG in the cerebellum and brain stem. By using deuterated l -DOPA in place of l -DOPA and measuring both the deuterated and nondeuterated norepinephrine metabolites, we demonstrated that virtually all of the increases in MHPG and DHPG were due to the conversion of the exogenous l -DOPA to norepinephrine. Thus, the effects of norepinephrine metabolism need to be considered in attempts to understand clinical and behavioral effects of l -DOPA.  相似文献   

5.
To assess whether the metabolic clearance of rat brain norepinephrine (NE) through 3,4-dihydroxyphenylethyleneglycol (DHPG) formation is quantitatively comparable or greater than through 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) production, we studied the accumulation rates of conjugated DHPG and MHPG following probenecid administration in whole brain as well as in several brain regions. Administration of increasing doses of probenecid (100-500 mg/kg, i.p.) 1.5 h before sacrifice produced a dose-dependent increase of conjugated DHPG and MHPG levels. The maximum increment of these conjugated metabolites occurred at a dose of 300 mg/kg or higher. During the first hour following probenecid administration (300 mg/kg, i.p.), rat brain conjugated DHPG and MHPG levels accumulated linearly at a rate of 646 and 319 pmol/g/h, respectively. With the probenecid technique, the estimated appearance rates of conjugated DHPG significantly exceeded those of conjugated MHPG in hypothalamus, midbrain, brainstem, hippocampus, and cerebral cortex. These results clearly indicate that under resting conditions, formation and efflux of conjugated DHPG is the major route of metabolic clearance of rat brain NE.  相似文献   

6.
We investigated lithium-induced changes in norepinephrine (NE) catabolism. NE and its major metabolites 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenyl glycol (DHPG), ions such as lithium (Li(+)), magnesium (Mg(2+)), and potassium (K(+)) were measured in rat plasma and cerebral cortex using an HPLC method with electrochemical detection for amines. The results obtained with a group of rats treated by lithium chloride (2 mmol/kg/IP) were compared with a control group receiving sodium chloride (2 mmol/kg/IP). Animals were killed at different times over a period of six hours in the morning following salt administration to minimize possible chronobiological effects. There are two pathways leading to MHPG formation: way A, without DHPG, and way B, with DHPG. In plasma and cerebral cortex of lithium treated rats, way A catabolism seems to be preferential. Lithium increases Mg(2+) and K(+) plasma levels. These results suggest that lithium may increase inactivation of NE and decrease NE available for adrenergic receptors.  相似文献   

7.
It has been suggested that the circulating levels of 3-methoxy-4-hydroxyphenylethylene glycol (MHPG), a major end metabolite of noradrenaline (NA), may provide an index of central NA neuronal activity. The aim of this study was to examine in the rat the relationship between serum MHPG and hypothalamic NA neuronal activity during basal conditions, and when hypothalamic NA neuronal activity was stimulated or suppressed. Hypothalamic NA neuronal activity was assessed from the concentrations of the primary neuronal NA metabolite 3,4-dihydroxyphenylethyleneglycol (DHPG), MHPG, and the DHPG/NA and MHPG/NA ratios. Following 2-deoxyglucose (2DG) and cysteamine administration, hypothalamic NA neuronal activity and serum MHPG rose significantly. In contrast, hypothalamic NA neuronal activity and serum MHPG fell significantly in gentled rats. Serum MHPG correlated significantly with hypothalamic DHPG and the DHPG/NA ratio in control rats, and with hypothalamic DHPG, MHPG, and the DHPG/NA and MHPG/NA ratios in gentled, 2DG- and cysteamine-treated rats. In the latter two groups, serum MHPG also correlated significantly with serum glucose, which is itself closely related to hypothalamic NA neuronal activity. These studies demonstrate a significant relationship between serum MHPG and hypothalamic NA neuronal activity in the rat, so that serum MHPG provides an index of hypothalamic NA neuronal activity in the rat.  相似文献   

8.
To determine the degree of conversion of 3,4-dihydroxyphenylethyleneglycol (DHPG) to 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) and the amount of DHPG eliminated unchanged from the brain, we have examined the kinetics of formation and disappearance of mouse brain MHPG and DHPG following clorgyline (10 mg/kg, i.p.) and/or tropolone (75 mg/kg, i.p.) treatment. During the first 10 min after tropolone, brain DHPG levels accumulated linearly at a rate of 1,300 pmol/g/h, whereas MHPG disappeared exponentially at a rate of 411 pmol/g/h. Following clorgyline administration, brain DHPG declined exponentially at a rate of 1,240 pmol/g/h. In contrast, the elimination of MHPG became a first-order process only when catechol-O-methyltransferase (COMT) was also inhibited in addition to monoamine oxidase. Thus, combined clorgyline and tropolone treatment resulted in an exponential decline of MHPG levels at a rate of 524 pmol/g/h, whereas DHPG levels were slightly but significantly elevated compared to control values. When the animals were treated with pargyline (75 mg/kg, i.p.) in combination with clorgyline and tropolone, brain DHPG and MHPG disappeared at rates of 40 and 660 pmol/g/h, respectively. The above observations suggest that mouse brain DHPG is cleared primarily through O-methylation with minimal direct elimination from brain. Assuming the disposition and clearance of norepinephrine metabolites are similar in mouse and human brain, peripherally measured DHPG in humans is likely derived principally from extracerebral sources and reflects peripheral sympathetic function.  相似文献   

9.
Brain regional DHPG levels were determined following pharmacological manipulations that are known to alter brain noradrenergic neuronal activity. In rats given the α-adrenergic antagonist yohimbine (1, 5 and 10 mg/kg, i.p.) 2 h prior to sacrifice, there was a dose-dependent increase in cortical, midbrain, pons + medulla, hypothalamic and spinal total DHPG and MHPG concentrations. In contrast, cortical and spinal total DHPG and MHPG concentrations were markedly decreased 2 h following the α-adrenergic agonist, clonidine (10 and 250 μg/kg, i.p.). These findings indicate that rat brain DHPG formation is also sensitive to changes in brain noradrenergic neuronal impulse flow.  相似文献   

10.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

11.
Circadian rhythms in noradrenergic (NE) and dopaminergic (DA) metabolites and in cyclic nucleotide production were measured in discrete regions of rat brain. A circadian rhythm was found in the concentration of the NE metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), in the hippocampus. No MHPG rhythm was found in frontal, cingulate, parietal, piriform, insular or temporal cortex, or in hypothalamus. Circadian rhythms in the concentration of the NE metabolite, 3,4-dihydroxyphenylglycol (DHPG), occurred in occipital and parietal cortex and hypothalamus, with no rhythm observable in temporal or insular cortex, hippocampus, pons-medulla or cerebellum. The 24-hr mean concentration of MHPG varied 3.5-fold, highest in cingulate and lowest in parietal, temporal and occipital cortex. The 24-hr mean concentration of DHPG varied 6-fold, highest in hypothalamus and lowest in parietal cortex. Circadian rhythms in the concentration of the DA metabolite, homovanillic acid (HVA), were found in olfactory tubercle, amygdala and caudate-putamen, but not in nucleus accumbens. A circadian rhythm in the concentration of the DA metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), occurred in nucleus accumbens, but not in olfactory tubercle or caudate-putamen. The mean 24-hr concentration of HVA was highest in caudate-putamen, intermediate in nucleus accumbens, and lowest in olfactory tubercle and amygdala. The mean 24-hr concentration of DOPAC was highest in nucleus accumbens and lower in olfactory tubercle and caudate-putamen. Circadian rhythms were found in the concentration of cyclic GMP (cGMP) in all regions measured except parietal cortex. The mean 24-hr concentration varied 128-fold, highest in nucleus accumbens, frontal poles, and hypothalamus and lowest in cingulate cortex. Circadian rhythms in cyclic AMP (cAMP) concentration were found in piriform, temporal, occipital, cingulate, and parietal cortex, amygdala and nucleus accumbens. No rhythms were found in frontal or insular cortex, hypothalamus, hippocampus, caudate-putamen or olfactory tubercle. The 24-hr mean cAMP concentration varied 4-fold, highest in parietal cortex and lowest in caudate-putamen and amygdala. Norepinephrine metabolites and dopamine metabolites were rhythmic in few regions. It is, therefore, unlikely that the rhythmicity measured in adrenergic receptors is, in general, a response to rhythmic changes in adrenergic transmitter release. The putative second messenger response systems, especially cGMP, were more often rhythmic. The rhythms in cGMP are parallel in form and region to those in the alpha 1-adrenergic receptor and may act as 2nd messenger for that receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
An assay was developed to quantify norepinephrine (NE) and its metabolites (MHPG and DHPG) by high-performance liquid chromatography with electrochemical detection method (HPLC-ECD) in brain tissue and plasma of rats treated by LiCl. Separation on C(18) column was obtained by a mobile phase consisting of 4.5% methanol in buffer (0.1 M sodium acetate, 0.2 M citric acid) containing 0.2 mM ethylenediaminetetraacetic acid disodium salt (EDTA Na(2)) and 0.4 mM sodium octylsulfate, operated at a flow rate of 0.8 ml/min. A potential of +0.78 V was applied across the working and reference electrodes of the detector. The precision was in the range 2.88-4.35% for NE, 5.94-11.0% for MHPG and 1.97-4.40% for DHPG. Accuracy was 98.8-99.3% for NE, 97.4-100% for MHPG and 96.1-101% for DHPG. The limit of detection was 0.6 ng/ml for NE, 0.5 ng/ml for MHPG and 0.2 ng/ml for DHPG. The linearity is over the range 20-60 ng/ml for NE, 7-23 ng/ml for MHPG and 6-20 ng/ml for DHPG. The assay has been applied successfully to measure simultaneously cortex and plasmas concentrations of these three catecholamines in rats.  相似文献   

13.
The usefulness of the plasma concentrations of two major metabolites of norepinephrine (NE), 3,4-dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG), as indicators of neuronal NE release was investigated. The potent alpha 2-adrenoceptor agonist, dexmedetomidine, induced only about 15% maximal reductions in the metabolite concentrations, in spite of almost total inhibition of neuronal NE release, as evidenced by 90% reductions in plasma NE concentrations. Similarly, administration of the alpha 2-adrenoceptor antagonist atipamezole was followed by only small increases in plasma DHPG and no change in MHPG levels, in spite of almost six-fold, albeit short-lasting, increases in plasma NE. In contrast, a single dose of the reversible monoamine oxidase type A (MAO-A) inhibitor moclobemide reduced plasma DHPG levels by 78% and MHPG levels by 51%. It is concluded that the plasma concentrations of DHPG and MHPG are largely determined by intraneuronal, MAO-A-dependent metabolism of NE, and do not accurately reflect acute alterations in neuronal NE release. The concentration of NE in venous plasma is clearly a more sensitive indicator of alpha 2-adrenoceptor-mediated regulation of NE release.  相似文献   

14.
Abstract— Noradrenaline (NA), dopamine (DA). 5-hydroxytryptamine (5-HT), 4-hydroxy, 3-methoxy-phenylethylene glycol (MHPG), homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolylacetic acid (5-HIAA) were measured in twenty areas of post-mortem brain from ten psychiatrically and neurologically normal patients. There was a marked difference, which did not appear to be related to sex, medication, cause of death or time between death and dissection, in amine and metabolite concentrations between brains. In the cortex, 5-HT, MHPG, HVA. DOPAC and S-HIAA were approximately even in their distribution; NA and DA could not be detected. In sub-cortical areas there were clear differences in the distribution of the three amines accompanied by less marked differences in the distribution of their respective metabolites.  相似文献   

15.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

16.
Effects of DSP-4 on noradrenaline (NA), 3-methoxy-4-hydroxyphenyl glycol (MHPG), serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) levels and on beta adrenoceptor binding kinetics (Bmax and KD) in rat hippocampus, cortex and hypothalamus were studied between 24 hours and 14 days after systemic administration. Beta adrenoceptor numbers in hippocampus and cortex, but not in hypothalamus, were significantly increased after DSP-4. No significant changes in KD values were observed in hypothalamus, but significant increases in this parameter were measured in hippocampus and cortex. NA and MHPG levels were significantly decreased in all three brain regions, but MHPG/NA ratios were increased in hippocampus, decreased in cortex and unchanged in hypothalamus. Very prominent increases in 5-HIAA levels were observed in all three brain regions, but only at one day after DSP-4. The greatest increases in 5-HIAA levels occurred in the hippocampus, but this effect of DPS-4 appeared to be slightly diminished by pre-treatment with fluoxetine. In cortex and hippocampus 5-HT levels were slightly, but significantly decreased after DSP-4.  相似文献   

17.
A method is described for simultaneous assessment of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), and their 7-hydroxylated metabolites in cortex and subcortex of the rat brain. The procedure for determination of unconjugated steroids and DHEAS involved diethyl ether extraction of the homogenized tissue, solvent partition of the dry extract, and final quantification by specific radioimmunoassays. In addition, determination of 7-hydroxy-dehydroepiandrosterone sulfates required solvolysis, followed by high-performance liquid chromatography for separation of 7-hydroxylated metabolites from their precursor. The losses during this process were monitored by measurement of spiked radioactivity of [(3)H]testosterone or [(3)H]dehydroepiandrosterone sulfate. The content of dehydroepiandrosterone sulfate in both brain tissues was of the order of ten(s) nmol/g tissue irrespective its type (cortex or subcortex), while concentrations of other steroids were about 10 times lower in both tissues. In contrast to the ratio of sulfated/unconjugated DHEA, the levels of unconjugated 7-hydroxylated metabolites and their sulfates were close to each other. The reproducibility of the method with respect to coefficients of variation varied from 12 to 25%. An age-related decrease of sulfated dehydroepiandrosterone in the cortex of animals was also observed.  相似文献   

18.
Major and minor pathways of metabolism in the mammalian CNS result in the formation of 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) and normetanephrine (NMN) from norepinephrine (NE), and homovanillic acid (HVA) and 3-methoxytyramine (3-MT) from dopamine (DA), respectively. The correlational relationships between HVA and 3-MT and between MHPG and NMN in primate CSF and plasma have not been described. These relationships may help to elucidate the usefulness of CSF and plasma metabolites as indices of CNS NE and DA activity. In addition, because NMN is unlikely to cross the blood-brain barrier. CSF NMN concentrations would not be confounded by contributions from plasma, which is a major issue with CSF MHPG. We have obtained repeated samples of plasma and CSF from drug-naive male squirrel monkeys and have measured the concentrations of MHPG, HVA, NMN, and 3-MT to define their correlational relationships. For the NE metabolites, significant correlations were obtained for CSF MHPG and NMN (r = 0.806, p less than 0.001), plasma MHPG and CSF NMN (r = 0.753, p less than 0.001), and plasma and CSF MHPG (r = 0.776, p less than 0.001). These results suggest that CSF and plasma MHPG and CSF NMN may reflect gross changes in whole brain steady-state noradrenergic metabolism. Only a single significant relationship was demonstrated for the DA metabolites, with CSF 3-MT correlating with plasma HVA (r = 0.301, p less than 0.025). The results for the DA metabolites probably reflect regional differences in steady-state brain dopaminergic metabolism.  相似文献   

19.
There are conflicting reports of the effects of aging on human neurotransmitter systems as estimated by monoamine metabolite concentrations in cerebrospinal fluid (CSF). These discrepancies may be due to sampling site, age or sex of the subjects or other variables that affect CSF metabolite determinations. Cisternal CSF concentrations of homovanillic acid (HVA), 3-methoxy-4-hydroxyphenyl-ethylene glycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), major metabolites of dopamine, norepinephrine and serotonin, respectively, were measured in rhesus monkeys (Macaca mulatta) of two age groups. Concentrations of HVA and MHPG were significantly lower in the older group of monkeys, whereas no changes in 5-HIAA were found. This supports the hypothesis that brain catecholamine concentrations decline with age.  相似文献   

20.
The effect of desmethylimipramine on the metabolism of norepinephrine   总被引:2,自引:0,他引:2  
Eleven normal volunteers were given an acute and two chronic doses of desipramine (DMI). The plasma norepinephrine (NE), 3-methoxy-4-hydroxyphenylglycol (MHPG), and dihydroxyphenylglycol (DHPG) concentrations were measured before and during drug administration. DMI reduced plasma concentrations of MHPG by 13% and DHPG by 17%. After two weeks of drug administration, the MHPG/NE ratio was reduced, and there was a significant negative correlation with the concurrent drug concentration. These results suggest that DMI: (1) reduces the turnover of NE; and (2) diminishes the oxidative deamination of NE. In addition, the drug concentration response relationship indicates that the effects of uptake inhibition may not be maximal until concentrations in the apparent therapeutic range are achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号