首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two mixed bacterial cultures isolated by soil enrichment were capable of utilizing methyl parathion (O,O-dimethyl O-p-nitrophenylphosphorothioate) and parathion (O,O-diethyl O-p-nitrophenylphosphorothioate) as a sole source of carbon. Four isolates from these mixed cultures lost their ability to utilize the pesticides independently in transfers subsequent to the initial isolation. One member of the mixed cultures, a Pseudomonas sp., however, hydrolyzed the pesticides to p-nitrophenol but required glucose or another carbon source for growth. The crude cell extracts prepared from this bacterium showed an optimum pH range from 7.5 to 9.5 for the enzymatic hydrolysis. Maximum enzymatic activity occurred between 35 and 40 degrees C. The enzyme activity was not inhibited by heavy metals, EDTA, or NaN3. Another isolate from the mixed cultures, a Flavobacterium sp., used p-nitrophenol for growth and degraded it to nitrite. Nitrite was assimilated into the cells under conditions during which the nitrogen source was excluded from the minimal growth medium. The hybridization data showed that the DNAs from a Pseudomonas sp. and from the mixed culture had homology with the opd (organophosphate degradation) gene from a previously reported parathion-hydrolyzing bacterium, Flavobacterium sp. The use of the opd gene as a probe may accelerate progress toward understanding the complex interactions of soil microorganisms with parathions.  相似文献   

4.
5.
Substrate specificity of CTP synthetase from Escherichia coli   总被引:1,自引:0,他引:1  
The stoichiometry of the enzymatic reaction catalyzed by CTP synthetase from Escherichia coli was analyzed by high-performance liquid chromatography. The results revealed that for every mole of UTP transformed to CTP, one mole of ATP was converted to ADP. The substrate specificity of CTP synthetase from E. coli was investigated by means of UTP analogs. Chemical modification of UTP involved either the uracil, ribose or 5'-triphosphate part. None of the UTP analogs studied proved to be a substrate. The capacity of the UTP analogs to inhibit CTP synthetase was investigated. From the UTP derivatives employed only 2-thiouridine 5'-triphosphate was found to inhibit the enzyme competitively with reasonable affinity: Ki/Km(UTP) = 1. This study indicated that the three main structural elements of the UTP molecule: uracil, ribose and 5'-triphosphate moiety, contribute to substrate specificity. The behaviour of a limited number of CTP analogs as product-like inhibitors supported this view.  相似文献   

6.
Restriction maps of two plasmids encoding parathion hydrolase have been determined. pPDL2 is a 39-kb plasmid harbored by Flavobacterium sp. (ATCC 27551), while pCMS1 is a 70-kb plasmid found in Pseudomonas diminuta (strain MG). Both plasmids previously have been shown to share homologous parathion hydrolase genes (termed opd for organophosphate degradation) as judged by DNA-DNA hybridization and restriction mapping. In the present study, we conducted DNA hybridization experiments using each of nine PstI restriction fragments from pCMS1 as probes against Flavobacterium plasmid DNA. The opd genes of both plasmids are located within a highly conserved region of approximately 5.1 kb. This region of homology extends approximately 2.6 kb upstream and 1.7 kb downstream from the opd genes. No homology between the two plasmids is evident outside of this region.  相似文献   

7.
Two mixed bacterial cultures isolated by soil enrichment were capable of utilizing methyl parathion (O,O-dimethyl O-p-nitrophenylphosphorothioate) and parathion (O,O-diethyl O-p-nitrophenylphosphorothioate) as a sole source of carbon. Four isolates from these mixed cultures lost their ability to utilize the pesticides independently in transfers subsequent to the initial isolation. One member of the mixed cultures, a Pseudomonas sp., however, hydrolyzed the pesticides to p-nitrophenol but required glucose or another carbon source for growth. The crude cell extracts prepared from this bacterium showed an optimum pH range from 7.5 to 9.5 for the enzymatic hydrolysis. Maximum enzymatic activity occurred between 35 and 40 degrees C. The enzyme activity was not inhibited by heavy metals, EDTA, or NaN3. Another isolate from the mixed cultures, a Flavobacterium sp., used p-nitrophenol for growth and degraded it to nitrite. Nitrite was assimilated into the cells under conditions during which the nitrogen source was excluded from the minimal growth medium. The hybridization data showed that the DNAs from a Pseudomonas sp. and from the mixed culture had homology with the opd (organophosphate degradation) gene from a previously reported parathion-hydrolyzing bacterium, Flavobacterium sp. The use of the opd gene as a probe may accelerate progress toward understanding the complex interactions of soil microorganisms with parathions.  相似文献   

8.
9.
Pseudomonas aeruginosa PAO1 secretes a siderophore, pyoverdine(PAO), which contains a short peptide attached to a dihydroxyquinoline moiety. Synthesis of this peptide is thought to be catalyzed by nonribosomal peptide synthetases, one of which is encoded by the pvdD gene. The first module of pvdD was overexpressed in Escherichia coli, and the protein product was purified. L-Threonine, one of the amino acid residues in pyoverdine(PAO), was an effective substrate for the recombinant protein in ATP-PP(i) exchange assays, showing that PvdD has peptide synthetase activity. Other amino acids, including D-threonine, L-serine, and L-allo-threonine, were not effective substrates, indicating that PvdD has a high degree of substrate specificity. A three-dimensional modeling approach enabled us to identify amino acids that are likely to be critical in determining the substrate specificity of PvdD and to explore the likely basis of the high substrate selectivity. The approach described here may be useful for analysis of other peptide synthetases.  相似文献   

10.
Substrate specificity of Escherichia coli thymidine phosphorylase to thymidine derivatives modified at 5' -, 3' -, and 2' ,3' - positions of the sugar moiety was studied. Equilibrium and kinetic constants (K(m), K(I), k(cat)) of the phosphorolysis reaction have been determined for 20 thymidine analogs. The results are compared with X-ray and molecular dynamics data. The most important hydrogen bonds in the enzyme-substrate complex are revealed.  相似文献   

11.
A Soil Flavobacterium sp. that Degrades Sulphanilamide and Asulam   总被引:2,自引:0,他引:2  
Eight strains belonging to Thermobacterium have been isolated from high temperature (between 40° and 43°C) fermenting grape musts. They resemble Lactobacillus acidophilus very closely. Four other thermophilic homofermentative strains are somewhat different: they ferment arabinose and ribose with production of more than 90% of the end product carbon as lactate. This last result involves a metabolic pathway undescribed among lactic acid bacteria.  相似文献   

12.
13.
14.
Substrate specificity (typoselectivity), regioselectivity and hydrolytic activity of induced lipases from three strains (4012, 4013, 4166) of Geotrichum candidum and that of Geotrichum ludwigii (48) were investigated. The lipases were induced in two types of culture media, of which the medium containing peptone as nitrogen source was proved to give better results. Olive oil was employed as inductor for the lipase activity. Activated lipases represented mostly extracelullar lipases, which penetrated through cellular membrane into medium. The activity of cell-bound lipase was also determined. Most of lipases belong to the group of specific lipases able to hydrolyse ester bonds in the positions sn-1 and sn-3 ester of triacylglycerols (1,3-selective lipases) and display specificity to saturated fatty acids. All activated lipases from Geotrichum sp., extracellular and cell-bound, were used as biocatalyst in the blackcurrant oil hydrolysis.  相似文献   

15.
16.
L-ribulokinase is unusual among kinases since it phosphorylates all four 2-ketopentoses with almost the same k(cat) values. The K(m)'s differ, however, being 0.14 mM for L- and 0.39 mM for d-ribulose and 3.4 mM for l- and 16 mM for d-xylulose. In addition, L-arabitol is phosphorylated at C-5 (K(m) 4 mM) and ribitol (adonitol) is phosphorylated to D-ribitol-5-phosphate (K(m) 5.5 mM), but D-arabitol, xylitol, and aldopentoses are not substrates. The K(m)'s for MgATP depend on the substrates, being 0.02 mM with L-ribulose, 0.027 mM with D-ribulose and L-xylulose, and 0.3-0.5 mM with the other substrates. In the absence of a sugar substrate there is an ATPase with K(m) of 7 mM and k(cat) 1% of that with sugar substrates. The initial velocity pattern is intersecting, and MgAMPPNP is competitive vs MgATP and uncompetitive vs L-ribulose. L-Erythrulose is competitive vs L-ribulose and when MgATP concentration is varied induces substrate inhibition which is partial. These data show that the mechanism is random, but there is a high level of synergism in the binding of sugar and MgATP, and the path in which the sugar adds first is strongly preferred.  相似文献   

17.
18.
The chloromuconate cycloisomerase of Pseudomonas sp. B13 was purified from 3-chlorobenzoate-grown wild-type cells while the chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4) and Pseudomonas sp. P51 (pP51) were purified from Escherichia coli strains expressing the corresponding gene. Kinetic studies were performed with various chloro-, fluoro-, and methylsubstituted cis,cis-muconates. 2,4-Dichloro-cis,cis-muconate proved to be the best substrate for all three chloromuconate cycloisomerases. Of the three enzymes, TfdD of Ralstonia eutropha JMP134 (pJP4) was most specific, since its specificity constant for 2,4-dichloro-cis,cis-muconate was the highest, while the constants for cis,cis-muconate, 2-chloro- and 2,5-dichloro-cis,cis-muconate were especially poor. The sequence of ClcB of the 3-chlorobenzoate-utilizing strain Pseudomonas sp. B13 was determined and turned out to be identical to that of the corresponding enzyme of pAC27 (though slightly different from the published sequences). Corresponding to 2-chloro-cis,cis-muconate being a major metabolite of 3-chlorobenzoate degradation, the k cat/K m with 2-chloro-cis,cis-muconate was relatively high, while that with the still preferred substrate 2,4-dichloro-cis,cis-muconate was relatively low. This enzyme was thus the least specific and the least active among the three compared enzymes. TcbD of Pseudomonas sp. P51 (pP51) took an intermediate position with respect to both the degree of specificity and the activity with the preferred substrate. Received: 7 August 1998 / Received revision: 24 November 1998 / Accepted: 29 November 1998  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号