共查询到20条相似文献,搜索用时 0 毫秒
1.
Here, we report the NMR solution structures of Mycobacterium tuberculosis (M. tuberculosis) thioredoxin C in both oxidized and reduced states, with discussion of structural changes that occur in going between redox states. The NMR solution structure of the oxidized TrxC corresponds closely to that of the crystal structure, except in the C‐terminal region. It appears that crystal packing effects have caused an artifactual shift in the α4 helix in the previously reported crystal structure, compared with the solution structure. On the basis of these TrxC structures, chemical shift mapping, a previously reported crystal structure of the M. tuberculosis thioredoxin reductase (not bound to a Trx) and structures for intermediates in the E. coli thioredoxin catalytic cycle, we have modeled the complete M. tuberculosis thioredoxin system for the various steps in the catalytic cycle. These structures and models reveal pockets at the TrxR/TrxC interface in various steps in the catalytic cycle, which can be targeted in the design of uncompetitive inhibitors as potential anti‐mycobacterial agents, or as chemical genetic probes of function. © Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献
2.
3.
Naheda Sahtout Jijin R. A. Kuttiyatveetil Michel Fodje David A. R. Sanders 《Acta Crystallographica. Section F, Structural Biology Communications》2016,72(6):443-447
Thioredoxin is a small ubiquitous protein that plays a role in many biological processes. A putative thioredoxin, Trx1, from Thermosipho africanus strain TCF52B, which has low sequence identity to its closest homologues, was successfully cloned, overexpressed and purified. The protein was crystallized using the microbatch‐under‐oil technique at 289 K in a variety of conditions; crystals grown in 0.2 M MgCl2, 0.1 M bis‐tris pH 6.5, 25%(w/v) PEG 3350, which grew as irregular trapezoids to maximum dimensions of 1.2 × 1.5 × 0.80 mm, were used for sulfur single‐wavelength anomalous dispersion analysis. The anomalous sulfur signal could be detected to 2.83 Å resolution using synchrotron radiation on the 08B1‐1 beamline at the Canadian Light Source. The crystals belonged to space group P212121, with unit‐cell parameters a = 40.6, b = 41.5, c = 56.4 Å, α = β = γ = 90.0°. 相似文献
4.
Gerhard Wagner 《Journal of biomolecular NMR》1993,3(4):375-385
Summary During the last decade, solution structures of many small proteins have been solved by NMR. The size of proteins that are being analyzed by NMR seems to increase steadily. Protein structures up to 18 kD have been solved sofar, and spectra of proteins up to 30 kD have been assigned. Thus, NMR emerges as an attractive technique, in particular for structural studies of proteins that cannot by crystallized. However, the application of the technology is limited by relaxation properties of the proteins. If relaxation would only be determined by Stokes-Einstein-type rotational diffusion, the effects of the molecular size on relaxation properties of proteins and thus on the performance of multi-dimensional multiple-resonance experiments could readily be estimated. From this perspective, solving two- or three-fold larger structures seems possible. However, most larger proteins exhibit serious line broadening due to aggregation or other still unknown effects. Sample conditioning to minimize these effects is presently the challenge in the work with large proteins. 相似文献
5.
Pedone E D'Ambrosio K De Simone G Rossi M Pedone C Bartolucci S 《Journal of molecular biology》2006,356(1):155-164
A potential role in disulfide bond formation in the intracellular proteins of thermophilic organisms has recently been attributed to a new family of protein disulfide isomerase (PDI)-like proteins. Members of this family are characterized by a molecular mass of about 26kDa and by two Trx folds, each comprising a CXXC active site motif. We report on the functional and structural characterization of a new member of this family, which was isolated from the thermophilic bacterium Aquifex aeolicus (AaPDO). Functional studies have revealed the high catalytic efficiency of this enzyme in reducing, oxidizing and isomerizing disulfide bridges. Site-directed mutagenesis experiments have suggested that its two active sites have similar functional properties, i.e. that each of them imparts partial activity to the enzyme. This similarity was confirmed by the analysis of the enzyme crystal structure, which points to similar geometrical parameters and solvent accessibilities for the two active sites. The results demonstrated that AaPDO is the most PDI-like of all prokaryotic proteins so far known. Thus, further experimental studies on this enzyme are likely to provide important information on the eukaryotic homologue. 相似文献
6.
NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins.
下载免费PDF全文

T. H. Xia J. H. Bushweller P. Sodano M. Billeter O. Bjrnberg A. Holmgren K. Wüthrich 《Protein science : a publication of the Protein Society》1992,1(3):310-321
The determination of the NMR structure of oxidized Escherichia coli glutaredoxin in aqueous solution is described, and comparisons of this structure with that of reduced E. coli glutaredoxin and the related proteins E. coli thioredoxin and T4 glutaredoxin are presented. Based on nearly complete sequence-specific 1H-NMR assignments, 804 nuclear Overhauser enhancement distance constraints and 74 dihedral angle constraints were obtained as the input for the structure calculations, for which the distance geometry program DIANA was used followed by simulated annealing with the program X-PLOR. The molecular architecture of oxidized glutaredoxin is made up of three helices and a four-stranded beta-sheet. The three-dimensional structures of oxidized and the recently described reduced glutaredoxin are very similar. Quantitative analysis of the exchange rates of 34 slowly exchanging amide protons from corresponding series of two-dimensional [15N,1H]-correlated spectra of oxidized and reduced glutaredoxin showed close agreement, indicating almost identical hydrogen-bonding patterns. Nonetheless, differences in local dynamics involving residues near the active site and the C-terminal alpha-helix were clearly manifested. Comparison of the structure of E. coli glutaredoxin with those of T4 glutaredoxin and E. coli thioredoxin showed that all three proteins have a similar overall polypeptide fold. An area of the protein surface at the active site containing Arg 8, Cys 11, Pro 12, Tyr 13, Ile 38, Thr 58, Val 59, Pro 60, Gly 71, Tyr 72, and Thr 73 is proposed as a possible site for interaction with other proteins, in particular ribonucleotide reductase. It was found that this area corresponds to previously proposed interaction sites in T4 glutaredoxin and E. coli thioredoxin. The solvent-accessible surface area at the active site of E. coli glutaredoxin showed a general trend to increase upon reduction. Only the sulfhydryl group of Cys 11 is exposed to the solvent, whereas that of Cys 14 is buried and solvent inaccessible. 相似文献
7.
Selenocysteine (Sec) is incorporated into proteins in response to UGA codons. This residue is frequently found at the catalytic sites of oxidoreductases. In this study, we characterized the selenoproteome of an anaerobic bacterium, Clostridium sp. (also known as Alkaliphilus oremlandii) OhILA, and identified 13 selenoprotein genes, five of which have not been previously described. One of the detected selenoproteins was methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that repairs oxidatively damaged methionines in a stereospecific manner. To date, little is known about MsrA from anaerobes. We characterized this selenoprotein MsrA which had a single Sec residue at the catalytic site but no cysteine (Cys) residues in the protein sequence. Its SECIS (Sec insertion sequence) element did not resemble those in Escherichia coli. Although with low translational efficiency, the expression of the Clostridium selenoprotein msrA gene in E. coli could be demonstrated by (75)Se metabolic labeling, immunoblot analyses, and enzyme assays, indicating that its SECIS element was recognized by the E. coli Sec insertion machinery. We found that the Sec-containing MsrA exhibited at least a 20-fold higher activity than its Cys mutant form, indicating a critical role of Sec in the catalytic activity of the enzyme. Furthermore, our data revealed that the Clostridium MsrA was inefficiently reducible by thioredoxin, which is a typical reducing agent for MsrA, suggesting the use of alternative electron donors in this anaerobic bacterium that directly act on the selenenic acid intermediate and do not require resolving Cys residues. 相似文献
8.
Thiol‐disulphide redox regulation has a key role during the biogenesis of mitochondrial intermembrane space (IMS) proteins. Only the Cys‐reduced form of precursor proteins can be imported into mitochondria, which is followed by disulphide bond formation in the mitochondrial IMS. In contrast to the wealth of knowledge on the oxidation process inside mitochondria, little is known about how precursors are maintained in an import‐competent form in the cytosol. Here we provide the first evidence that the cytosolic thioredoxin system is required to maintain the IMS small Tim proteins in reduced forms and facilitate their mitochondrial import during respiratory growth. 相似文献
9.
Yingang Feng Xiaxia Song Jinzhong Lin Jinsong Xuan Qiu Cui Jinfeng Wang 《Biochemical and biophysical research communications》2014
Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae. 相似文献
10.
Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR
spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present
here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without
prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification
in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone 1Hα and 13C′ chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such
linear combinations of shifts facilitate editing of residues belonging to α-helical/β-strand regions into distinct spectral
regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content
of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D
structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall
rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken
together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination,
monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
11.
Summary A novel protocol for isotopically labeling bacterially expressed proteins is presented. This method circumvents problems related to poor cell growth, commonly associated with the use of minimal labeled media, and problems with protein induction encountered, less commonly, when using enriched labeled media. The method involves initially growing the bacterial cells to high optical density in a commercially available enriched labeled medium. Following a suitable growth period, the cells are transferred to a different (minimal) labeled medium, appropriate for induction. The method is demonstrated using the protein melanoma growth stimulating activity (MGSA). 相似文献
12.
L. W. Guddat J. C. Bardwell R. Glockshuber M. Huber-Wunderlich T. Zander J. L. Martin 《Protein science : a publication of the Protein Society》1997,6(9):1893-1900
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys30-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of approximately 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys30. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature. 相似文献
13.
Chunjie Liang Jiang Zhu Theresa A. Ramelot Michael A. Kennedy Xiali Yue Xuegang Li Maili Liu Ting He Yunhuang Yang 《Proteins》2019,87(1):91-95
We report the solution nuclear magnetic resonance (NMR) structure of CHU_1110 from Cytophaga hutchinsonii. CHU_1110 contains three α-helices and one antiparallel β-sheet, forming a large cavity in the center of the protein, which are consistent with the structural characteristics of AHSA1 protein family. This protein shows high structural similarities to the prokaryotic proteins RHE_CH02687 from Rhizobium etli and YndB from Bacillus subtilis, which can bind with flavinoids. Unlike these two homologs, CHU_1110 shows no obvious interaction with flavonoids in NMR titration experiments. In addition, no direct interaction has been observed between CHU_1110 and ATP, although many homologous sequences of CHU_1110 have been annotated as ATPase. Combining the analysis of structural similarity of CHU_1110 and genomic context of its encoding gene, we speculate that CHU_1110 may be involved in the stress response of bacteria to heavy metal ions, even though its specific biological functions that need to be further investigated. 相似文献
14.
NMR chemical shifts provide important local structural information for proteins. Consistent structure generation from NMR chemical shift data has recently become feasible for proteins with sizes of up to 130 residues, and such structures are of a quality comparable to those obtained with the standard NMR protocol. This study investigates the influence of the completeness of chemical shift assignments on structures generated from chemical shifts. The Chemical-Shift-Rosetta (CS-Rosetta) protocol was used for de novo protein structure generation with various degrees of completeness of the chemical shift assignment, simulated by omission of entries in the experimental chemical shift data previously used for the initial demonstration of the CS-Rosetta approach. In addition, a new CS-Rosetta protocol is described that improves robustness of the method for proteins with missing or erroneous NMR chemical shift input data. This strategy, which uses traditional Rosetta for pre-filtering of the fragment selection process, is demonstrated for two paramagnetic proteins and also for two proteins with solid-state NMR chemical shift assignments. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
15.
J. Kemmink N. J. Darby K. Dijkstra R. M. Scheek T. E. Creighton 《Protein science : a publication of the Protein Society》1995,4(12):2587-2593
A genetically engineered protein consisting of the 120 residues at the N-terminus of human protein disulfide isomerase (PDI) has been characterized by 1H, 13C, and 15N NMR methods. The sequence of this protein is 35% identical to Escherichia coli thioredoxin, and it has been found also to have similar patterns of secondary structure and beta-sheet topology. The results confirm that PDI is a modular, multidomain protein. The last 20 residues of the N-terminal domain of PDI are some of those that are similar to part of the estrogen receptor, yet they appear to be an intrinsic part of the thioredoxin fold. This observation makes it unlikely that any of the segments of PDI with similarities to the estrogen receptor comprise individual domains. 相似文献
16.
Thioredoxins (TRXs) constitute attractive α/β scaffolds for investigating molecular recognition. The interaction between the recombinant fragment spanning the sequence 1-93 of full-length TRX (TRX1-93) and the synthetic peptide comprising residues 94-108 (TRX94-108), plus a C-terminal tyrosine tag (the numbering scheme used in entry pdb 2TRX is used throughout the article, two complementary moieties of E. coli TRX, brings about the consolidation of a native-like complex. Despite its reduced thermodynamic stability, this complex is able to acquire fine structural features remarkably similar to those characteristic of full-length TRX, namely, hydrodynamic behavior, assessed by diffusion-ordered spectroscopy (DOSY)-NMR; the pattern of secondary structure, as revealed by three-bond HNHα coupling constants and secondary shifts for Hα/CO/Cα/Cβ; native-like tertiary structural signatures revealed by near-UV circular dichroism (CD) spectroscopy. The complex exhibits a relaxation behavior compatible with that expected for a native-like structure. However, heteronuclear nuclear Overhauser effect (NOE)s reveal an enhanced dynamics for the complex by comparison with full-length TRX. Furthermore, higher R(2) values for residues 43-50 and 74-89 would likely result from an exchange process modulated by the peptide at the interface region. The slow kinetics of the consolidation reaction was followed by CD and real-time NMR. Equilibrium titration experiments by NMR yield a K(D) value of 1.4 ± 1.0 μM and a second low-affinity (>150 μM) binding event in the vicinity of the active site. Molecular dynamics simulations of both the isolated fragment TRX1-93 and the complex suggest the destabilization of α2 and α3 helical elements and the persistence of β-structure in the absence of TRX94-108. Altogether, structural and dynamic evidence presented herein points to the key role played by the C-terminal helix in establishing the overall fold. This critical switch module endows reduced TRX with the ability to act as a cooperative folding unit. 相似文献
17.
R. De Lorimier H. W. Hellinga L. D. Spicer 《Protein science : a publication of the Protein Society》1996,5(12):2552-2565
Core-packing mutants of proteins often approach molten globule states, and hence may have attributes of folding intermediates. We have studied a core-packing mutant of thioredoxin, L78K, in which a leucine residue is substituted by lysine, using 15N heteronuclear two- and three-dimensional NMR. Chemical shift differences between the mutant and wild-type main-chain resonances reveal that structural changes caused by the mutation are localized within 12 A of the altered side chain. The majority of resonances are unchanged, as are many 1H-1H NOEs indicative of the main-chain fold, suggesting that the structure of L78K is largely similar to wild type. Hydrogen exchange studies reveal that residues comprising the central beta-sheet of both mutant and wild-type proteins constitute a local unfolding unit, but with the unfolding/folding equilibrium approximately 12 times larger in L78K. The dynamics of main-chain NH bonds in L78K were studied by 15N spin relaxation and compared with a previous study of wild type. Order parameters for angular motion of NH bonds in the mutant are on average lower than in wild type, suggesting greater spatial freedom on a rapid time scale, but may also be related to different rotational correlation times in the two proteins. There is also evidence of greater conformational exchange in the mutant. Differences between mutant and wild type in hydrogen exchange and main-chain dynamics are not confined to the vicinity of the mutation. We infer that mispacking of the protein core in one location affects local dynamics and stability throughout. 相似文献
18.
The binding ability of a protein with a metal binding tag towards Ni(2+) was investigated by longitudinal paramagnetic NMR relaxation, and the possibility of obtaining long-range structure information from the paramagnetic relaxation was explored. A protein with a well-defined solution structure (Escherichia coli thioredoxin) was used as the model system, and the peptide His-His-Pro (HHP) fused to the N-terminus of the protein was used as the metal binding tag. It was found that the tag forms a stable dimer complex with the paramagnetic Ni(2+) ion, where each metal ion binds two HHP-tagged protein molecules. However, it was also found that additional sites in the protein compete with the HHP-tag for the binding of the metal ion. These binding sites were identified as the side chain carboxylate groups of the aspartic and glutamic acid residues. Yet, the carboxylate groups bind the Ni(2+) ions considerably weaker than the HHP-tag, and only protons spatially close to the carboxylate sites are affected by the Ni(2+) ions bound to these groups. As for the protons that are unaffected by the carboxylate-bound Ni(2+) ions, it was found that the long-range distances derived from the paramagnetic relaxation enhancements are in good agreement with the solution structure of thioredoxin. Specifically, the obtained long-range paramagnetic distance constraints revealed that the dimer complex is asymmetric with different orientations of the two protein molecules relative to the Ni(2+) ion. 相似文献
19.
The TASSER structure prediction algorithm is employed to investigate whether NMR structures can be moved closer to their corresponding X-ray counterparts by automatic refinement procedures. The benchmark protein dataset includes 61 nonhomologous proteins whose structures have been determined by both NMR and X-ray experiments. Interestingly, by starting from NMR structures, the majority (79%) of TASSER refined models show a structural shift toward their X-ray structures. On average, the TASSER refined models have a root-mean-square-deviation (RMSD) from the X-ray structure of 1.785 A (1.556 A) over the entire chain (aligned region), while the average RMSD between NMR and X-ray structures (RMSD(NMR_X-ray)) is 2.080 A (1.731 A). For all proteins having a RMSD(NMR_X-ray) >2 A, the TASSER refined structures show consistent improvement. However, for the 34 proteins with a RMSD(NMR_X-ray) <2 A, there are only 21 cases (60%) where the TASSER model is closer to the X-ray structure than NMR, which may be due to the inherent resolution of TASSER. We also compare the TASSER models with 12 NMR models in the RECOORD database that have been recalculated recently by Nederveen et al. from original NMR restraints using the newest molecular dynamics tools. In 8 of 12 cases, TASSER models show a smaller RMSD to X-ray structures; in 3 of 12 cases, where RMSD(NMR_X-ray) <1 A, RECOORD does better than TASSER. These results suggest that TASSER can be a useful tool to improve the quality of NMR structures. 相似文献
20.
Rak A Kalinin A Shcherbakov D Bayer P 《Biochemical and biophysical research communications》2002,299(5):710-714
The solution structure of the ribosome-associated cold shock response protein Yfia of Escherichia coli was determined by nuclear magnetic resonance with a RMSD of 0.6A. Yfia shows a global beta-alpha-beta-beta-beta-alpha folding topology similar to its homologue HI0257 of Haemophilus influenzae and the double-strand-binding domain of Drosophila Staufen protein. Yfia and HI0257 differ in their surface charges and in the composition of their flexible C-termini, indicating their specificity to different target molecules. Both proteins exhibit a hydrophobic and polar region, which probably functions as interaction site for protein complex formation. Despite their similarity to the dsRBD fold, Yfia does not bind to model fragments of 16S ribosomal RNA as determined by NMR titration and gel shift experiments. 相似文献