首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee DY  Ahn BY  Kim KS 《Biochemistry》2000,39(22):6652-6659
A thioredoxin homologue (Mj0307) from the hyperthermophilic archaeon Methanococcus jannaschii (MjTRX) was cloned, produced in E. coli, and compared to the thioredoxin from E. coli (ETRX). The secondary structure profile of MjTRX obtained by NMR spectroscopy shows that it has four beta-sheets and three alpha-helices arranged in betaalphabetaalphabetabetaalpha, similar to that of glutaredoxin. However, MjTRX supports the growth of T7 bacteriophage in E. coli and is weakly reduced by the thioredoxin reductase from E. coli, indicating that MjTRX is functionally closer to a thioredoxin than a glutaredoxin. MjTRX has higher specific insulin reductase activity than ETRX and retained its full activity over 4 days at 95 degrees C, whereas ETRX lost its activity in 150 min. The standard state redox potential of MjTRX is about -277 mV, which is the lowest value thus far known among redox potentials of the thioredoxin superfamily. This indicates that the lower redox potential is necessary in keeping catalytic disulfide bonds reduced in the cytoplasm and in coping with oxidative stress in an anaerobic hyperthermophile.  相似文献   

2.
The structure of wild-type bacteriophage T4 glutaredoxin (earlier called thioredoxin) in its oxidized form has been refined in a monoclinic crystal form at 2.0 A resolution to a crystallographic R-factor of 0.209. A mutant T4 glutaredoxin gives orthorhombic crystals of better quality. The structure of this mutant has been solved by molecular replacement methods and refined at 1.45 A to an R-value of 0.175. In this mutant glutaredoxin, the active site residues Val15 and Tyr16 have been substituted by Gly and Pro, respectively, to mimic that of Escherichia coli thioredoxin. The main-chain conformation of the wild-type protein is similar in the two independently determined molecules in the asymmetric unit of the monoclinic crystals. On the other hand, side-chain conformations differ considerably between the two molecules due to heterologous packing interactions in the crystals. The structure of the mutant protein is very similar to the wild-type protein, except at mutated positions and at parts involved in crystal contacts. The active site disulfide bridge between Cys14 and Cys17 is located at the first turn of helix alpha 1. The torsion angles of these residues are similar to those of Escherichia coli thioredoxin. The torsion angle around the S-S bond is smaller than that normally observed for disulfides: 58 degrees, 67 degrees and 67 degrees for wild-type glutaredoxin molecule A and B and mutant glutaredoxin, respectively. Each sulfur atom of the disulfide cysteines in T4 glutaredoxin forms a hydrogen bond to one main-chain nitrogen atom. The active site is shielded from solvent on one side by the beta-carbon atoms of the cysteine residues plus side-chains of residues 7, 9, 21 and 33. From the opposite side, there is a cleft where the sulfur atom of Cys14 is accessible and can be attacked by a nucleophilic thiolate ion in the initial step of the reduction reaction.  相似文献   

3.
Thioredoxin is ubiquitous and regulates various target proteins through disulfide bond reduction. We report the structure of thioredoxin (HvTrxh2 from barley) in a reaction intermediate complex with a protein substrate, barley alpha-amylase/subtilisin inhibitor (BASI). The crystal structure of this mixed disulfide shows a conserved hydrophobic motif in thioredoxin interacting with a sequence of residues from BASI through van der Waals contacts and backbone-backbone hydrogen bonds. The observed structural complementarity suggests that the recognition of features around protein disulfides plays a major role in the specificity and protein disulfide reductase activity of thioredoxin. This novel insight into the function of thioredoxin constitutes a basis for comprehensive understanding of its biological role. Moreover, comparison with structurally related proteins shows that thioredoxin shares a mechanism with glutaredoxin and glutathione transferase for correctly positioning substrate cysteine residues at the catalytic groups but possesses a unique structural element that allows recognition of protein disulfides.  相似文献   

4.
Mt0807 is an 85-residue thiol-redox protein from the anaerobic archaebacterium Methanobacterium thermoautotrophicum. Its small size, its participation in certain redox reactions, and the presence of a "classic" glutareodoxin active-site sequence have led to the suggestion that it might be a glutaredoxin. However, studies by previous workers indicated that it exhibited neither glutaredoxin-like nor thioredoxin-like properties. To clarify the true role of this protein and its structure/functional relationship with a paralogous thioredoxin (Mt0895, 28% sequence identity) and a recently characterized orthologous protein (Mj0307, 51% sequence identity), we undertook a series of biochemical and biophysical studies. Comparative enzymatic assays and thiol titration experiments were combined with NMR structural studies and detailed 3D structure comparisons. Structurally, our results show that Mt0807 has a glutaredoxin-like fold (central four-stranded beta-sheet core surrounded by two helices on one side and a third on the other). However, more detailed comparisons with other members of the thioredoxin superfamily indicate that Mt0807 actually has several key structural and active-site characteristics more common to a thioredoxin. Furthermore, biochemical tests show that Mt0807 actually behaves as true thioredoxin. Comparisons between Mt0807 and its paralogue, Mt0895, indicate these two archaebacterial thioredoxins share very similar folds, but exhibit very different activities and likely serve somewhat different roles. On the basis of its greater relative abundance and significantly stronger redox activity, we believe that Mt0807 is the primary thioredoxin for M. thermoautotrophicum, while Mt0895 plays a minor or supportive role. We also suggest that these two molecules (Mt0807 and Mt0895) may represent a group of ancient proteins that were ancestral to both thioredoxins and glutaredoxins.  相似文献   

5.
Thioredoxins and glutaredoxins as facilitators of protein folding   总被引:3,自引:0,他引:3  
Thiol-disulfide oxidoreductase systems of bacterial cytoplasm and eukaryotic cytosol favor reducing conditions and protein thiol groups, while bacterial periplasm and eukaryotic endoplasmatic reticulum provide oxidizing conditions and a machinery for disulfide bond formation in the secretory pathway. Oxidoreductases of the thioredoxin fold superfamily catalyze steps in oxidative protein folding via protein-protein interactions and covalent catalysis to act as chaperones and isomerases of disulfides to generate a native fold. The active site dithiol/disulfide of thioredoxin fold proteins is CXXC where variations of the residues inside the disulfide ring are known to increase the redox potential like in protein disulfide isomerases. In the catalytic mechanism thioredoxin fold proteins bind to target proteins through conserved backbone-backbone hydrogen bonds and induce conformational changes of the target disulfide followed by nucleophilic attack by the N-terminally located low pK(a) Cys residue. This generates a mixed disulfide covalent bond which subsequently is resolved by attack from the C-terminally located Cys residue. This review will focus on two members of the thioredoxin superfamily of proteins known to be crucial for maintaining a reduced intracellular redox state, thioredoxin and glutaredoxin, and their potential functions as facilitators and regulators of protein folding and chaperone activity.  相似文献   

6.
The alternate cofactor (7004 cofactor) for Escherichia coli adenosine 3'-phosphate 5'-phosphosulfate (PAPS) reductase originally discovered in an E. coli mutant (tsnC 7004) lacking thioredoxin activity has now been purified and characterized. The tryptic peptide map of the 7004 cofactor is totally different from that of thioredoxin, indicating that the two proteins are unrelated in their primary structure. The 7004 cofactor has an amino acid composition different from that of thioredoxin but similar to that of glutaredoxin, a protein required for the glutathione-dependent deoxyribonucleotide formation by ribonucleotide reductase. Thus, the 7004 cofactor could not be a mutated form of thioredoxin, as was suspected earlier. Thioredoxin but not glutaredoxin is a substrate for thioredoxin reductase, but both thioredoxin and glutaredoxin can catalyze the dithiothreitol- or glutathione-dependent reduction of PAPS. On a molar basis, the dithiothreitol-coupled cofactor activity of thioredoxin is three- to fourfold higher that that of glutaredoxin. Comparison of the cofactor activities in the glutathione-coupled and the dithiothreitol-coupled PAPS reductase reaction shows that the cofactor activity of thioredoxin in the glutathione-coupled reaction is only 23% of that observed in the dithiothreitol-coupled reaction. However, in the case of glutaredoxin, cofactor activities are approximately the same in both the dithiothreitol- and glutathione-coupled reactions.  相似文献   

7.
Glutaredoxin (thioltransferase) is a thiol-disulfide oxidoreductase that displays efficient and specific catalysis of protein-SSG deglutathionylation and is thereby implicated in homeostatic regulation of the thiol-disulfide status of cellular proteins. Sporidesmin is an epidithiopiperazine-2,5-dione (ETP) fungal toxin that disrupts cellular functions likely via oxidative alteration of cysteine residues on key proteins. In the current study sporidesmin inactivated human glutaredoxin in a time- and concentration-dependent manner. Under comparable conditions other thiol-disulfide oxidoreductase enzymes, glutathione reductase, thioredoxin, and thioredoxin reductase, were unaffected by sporidesmin. Inactivation of glutaredoxin required the reduced (dithiol) form of the enzyme, the oxidized (intramolecular disulfide) form of sporidesmin, and molecular oxygen. The inactivated glutaredoxin could be reactivated by dithiothreitol only in the presence of urea, followed by removal of the denaturant, indicating that inactivation of the enzyme involves a conformationally inaccessible disulfide bond(s). Various cysteine-to-serine mutants of glutaredoxin were resistant to inactivation by sporidesmin, suggesting that the inactivation reaction specifically involves at least two of the five cysteine residues in human glutaredoxin. The relative ability of various epidithiopiperazine-2,5-diones to inactivate glutaredoxin indicated that at least one phenyl substituent was required in addition to the epidithiodioxopiperazine moiety for inhibitory activity. Mass spectrometry of the modified protein is consistent with formation of intermolecular disulfides, containing one adducted toxin per glutaredoxin but with elimination of two sulfur atoms from the detected product. We suggest that the initial reaction is between the toxin sulfurs and cysteine 22 in the glutaredoxin active site. This study implicates selective modification of sulfhydryls of target proteins in some of the cytotoxic effects of the ETP fungal toxins and their synthetic analogues.  相似文献   

8.
E J Stewart  F Aslund    J Beckwith 《The EMBO journal》1998,17(19):5543-5550
Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur.  相似文献   

9.
Crystal structure of thioltransferase at 2.2 A resolution.   总被引:3,自引:3,他引:0       下载免费PDF全文
We report here the first three-dimensional structure of a mammalian thioltransferase as determined by single crystal X-ray crystallography at 2.2 A resolution. The protein is known for its thiol-redox properties and dehydroascorbate reductase activity. Recombinant pig liver thioltransferase expressed in Escherichia coli was crystallized in its oxidized form by vapor diffusion technique. The structure was determined by multiple isomorphous replacement method using four heavy-atom derivatives. The protein folds into an alpha/beta structure with a four-stranded mixed beta-sheet in the core, flanked on either side by helices. The fold is similar to that found in other thiol-redox proteins, viz. E. coli thioredoxin and bacteriophage T4 glutaredoxin, and thus seems to be conserved in these functionally related proteins. The active site disulfide (Cys 22-Cys 25) is located on a protrusion on the molecular surface. Cys 22, which is known to have an abnormally low pKa of 3.8, is accessible from the exterior of the molecule. Pro 70, which is in close proximity to the disulfide bridge, assumes a conserved cis-peptide configuration. Mutational data available on the protein are in agreement with the three-dimensional structure.  相似文献   

10.
Thioredoxin and related proteins in procaryotes   总被引:15,自引:0,他引:15  
Thioredoxin is a small (Mr 12,000) ubiquitous redox protein with the conserved active site structure: -Trp-Cys-Gly-Pro-Cys-. The oxidized form (Trx-S2) contains a disulfide bridge which is reduced by NADPH and thioredoxin reductase; the reduced form [Trx(SH)2] is a powerful protein disulfide oxidoreductase. Thioredoxins have been characterized in a wide variety of prokaryotic cells, and generally show about 50% amino acid homology to Escherichia coli thioredoxin with a known three-dimensional structure. In vitro Trx-(SH)2 serves as a hydrogen donor for ribonucleotide reductase, an essential enzyme in DNA synthesis, and for enzymes reducing sulfate or methionine sulfoxide. E. coli Trx-(SH)2 is essential for phage T7 DNA replication as a subunit of T7 DNA polymerase and also for assembly of the filamentous phages f1 and M13 perhaps through its localization at the cellular plasma membrane. Some photosynthetic organisms reduce Trx-S2 by light and ferredoxin; Trx-(SH)2 is used as a disulfide reductase to regulate the activity of enzymes by thiol redox control. Thioredoxin-negative mutants (trxA) of E. coli are viable making the precise cellular physiological functions of thioredoxin unknown. Another small E. coli protein, glutaredoxin, enables GSH to be hydrogen donor for ribonucleotide reductase or PAPS reductase. Further experiments with molecular genetic techniques are required to define the relative roles of the thioredoxin and glutaredoxin systems in intracellular redox reactions.  相似文献   

11.
The main function of reduced glutathione (GSH) is to protect from oxidative stress as a reactive oxygen scavenger. However, in the context of redox regulation, the ratio between GSH and its oxidized form (GSSG) determines the redox state of redox-sensitive cysteines in some proteins and, thus, acts as a signaling system. While GSH/GSSG can catalyze oxido-reduction of intra- and inter-chain disulfides by thiol-disulfide exchange, this review focuses on the formation of mixed disulfides between glutathione and proteins, also known as glutathionylation. The review discusses the regulatory role of this post-translational modification and the role of protein disulfide oxidoreductases (thioredoxin/thioredoxin reductase, glutaredoxin, protein disulfide isomerase) in the reversibility of this process.  相似文献   

12.
Abstract Thioredoxin is a small ( M r 12,000) ubiquitous redox protein with the conserved active site structure: -Trp-Cys-Gly-Pro-Cys-. The oxidized form (Trx-S2) contains a disulfide bridge which is reduced by NADPH and thioredoxin reductase; the reduced form [Trx(SH)2] is a powerful protein disulfide oxidoreductase. Thioredoxins have been characterized in a wide variety of prokaryotic cells, and generally show about 50% amino acid homology to Escherichia coli thioredoxin with a known three-dimensional structure. In vitro Trx-(SH)2 serves as a hydrogen donor for ribonucleotide reductase, an essential enzyme in DNA synthesis, and for enzymes reducing sulfate or methionine sulfoxide. E. coli Trx-(SH)2 is essential for phage T7 DNA replication as a subunit of T7 DNA polymerase and also for assembly of the filamentous phages f1 and M13 perhaps through its localization at the cellular plasma membrane. Some photosynthetic organisms reduce Trx-S2 by light and ferrodoxin; Trx-(SH)2 is used as a disulfide reductase to regulate the activity of enzymes by thiol redox control.
Thioredoxin-negative mutants ( trxA ) of E. coli are viable making the precise cellular physiological functions of thioredoxin unknown. Another small E. coli protein, glutaredoxin, enables GSH to be hydrogen donor for ribonucleotide reductase or PAPS reductase. Further experiments with molecular genetic techniques are required to define the relative roles of the thioredoxin and glutaredoxin systems in intracellular redox reactions.  相似文献   

13.
Thioredoxin/glutathione reductase (TGR) is a recently discovered member of the selenoprotein thioredoxin reductase family in mammals. In contrast to two other mammalian thioredoxin reductases, it contains an N-terminal glutaredoxin domain and exhibits a wide spectrum of enzyme activities. To elucidate the reaction mechanism and regulation of TGR, we prepared a recombinant mouse TGR in the selenoprotein form as well as various mutants and individual domains of this enzyme. Using these proteins, we showed that the glutaredoxin and thioredoxin reductase domains of TGR could independently catalyze reactions normally associated with each domain. The glutaredoxin domain is a monothiol glutaredoxin containing a CxxS motif at the active site, which could receive electrons from either the thioredoxin reductase domain of TGR or thioredoxin reductase 1. We also found that the C-terminal penultimate selenocysteine was required for transfer of reducing equivalents from the thiol/disulfide active site of TGR to the glutaredoxin domain. Thus, the physiologically relevant NADPH-dependent activities of TGR were dependent on this residue. In addition, we examined the effects of selenium levels in the diet and perturbations in selenocysteine tRNA function on TGR biosynthesis and found that expression of this protein was regulated by both selenium and tRNA status in liver, but was more resistant to this regulation in testes.  相似文献   

14.
As part of a high-throughput, structural proteomic project we have used NMR spectroscopy to determine the solution structure and ascertain the function of a previously unknown, conserved protein (MtH895) from the thermophilic archeon Methanobacterium thermoautotrophicum. Our findings indicate that MtH895 contains a central four-stranded beta-sheet core surrounded by two helices on one side and a third on the other. It has an overall fold superficially similar to that of a glutaredoxin. However, detailed analysis of its three-dimensional structure along with molecular docking simulations of its interaction with T7 DNA polymerase (a thioredoxin-specific substrate) and comparisons with other known members of the thioredoxin/glutaredoxin family of proteins strongly suggest that MtH895 is more akin to a thioredoxin. Furthermore, measurement of the pK(a) values of its active site thiols along with direct measurements of the thioredoxin/glutaredoxin activity has confirmed that MtH895 is, indeed, a thioredoxin and exhibits no glutaredoxin activity. We have also identified a group of previously unknown proteins from several other archaebacteria that have significant (34-44%) sequence identity with MtH895. These proteins have unusual active site -CXXC- motifs not found in any known thioredoxin or glutaredoxin. On the basis of the results presented here, we predict that these small proteins are all members of a new class of truncated thioredoxins.  相似文献   

15.
16.
Tsang ML 《Plant physiology》1981,68(5):1098-1104
Using the thioredoxin/glutaredoxin-dependent adenosine 3'-phosphate 5'-phosphosulfate reductase coupled assay system, the Chlorella thioredoxin/glutaredoxin system has been partially purified and characterized. A NADPH-thioredoxin reductase and two thioredoxin/glutaredoxin activities, designated as Chlorella thioredoxin/glutaredoxin protein I and II (CPI and CPII), were found in crude extracts of Chlorella. Similar to their counterparts from Escherichia coli, both CPI and CPII are heat-stable low molecular proteins of approximately 14,000. While CPI (but not CPII) is a substrate for its homologous NADPH-thioredoxin reductase as well as for E. coli NADPH-thioredoxin reductase, CPII is better than CPI as a substrate for reduction by the glutathione system. Based on these properties, CPI and CPII may be classified as Chlorella thioredoxin and Chlorella glutaredoxin, respectively. The Chlorella NADPH-thioredoxin reductase (M(r) = 72,000, with two 36,000-dalton subunits) resembles E. coli-thioredoxin reductase in size. Besides Chlorella thioredoxin, the Chlorella thioredoxin reductase will also use E. coli thioredoxin, but not glutaredoxin, as a substrate. Although a thioredoxin-like protein has been implicated in higher plant light-dependent sulfate reaction, neither Chlorella thioredoxin nor glutaredoxin can stimulate the thiol-dependent adenosine 5'-phosphosulfate-sulfotransferase reaction. Furthermore, Chlorella thioredoxin and glutaredoxin, in conjunction with an appropriate reductase system, cannot replace the thiol requirement of Chlorella adenosine 5'-phosphosulfate-sulfotransferase. The exact physiological roles and subcellular localization of the Chlorella thioredoxin and glutaredoxin systems remain to be determined.  相似文献   

17.
Thioredoxins are a group of small redox-active proteins involved in cellular redox regulatory processes as well as antioxidant defense. Thioredoxin, glutaredoxin, and tryparedoxin are members of the thioredoxin superfamily and share structural and functional characteristics. In the malarial parasite, Plasmodium falciparum, a functional thioredoxin and glutathione system have been demonstrated and are considered to be attractive targets for antimalarial drug development. Here we describe the identification and characterization of a novel 22 kDa redox-active protein in P. falciparum. As demonstrated by in silico sequence analyses, the protein, named plasmoredoxin (Plrx), is highly conserved but found exclusively in malarial parasites. It is a member of the thioredoxin superfamily but clusters separately from other members in a phylogenetic tree. We amplified the gene from a gametocyte cDNA library and overexpressed it in E. coli. The purified gene product can be reduced by glutathione but much faster by dithiols like thioredoxin, glutaredoxin, trypanothione and tryparedoxin. Reduced Plrx is active in an insulin-reduction assay and reduces glutathione disulfide with a rate constant of 640 m-1.s-1 at pH 6.9 and 25 degrees C; glutathione-dependent reduction of H2O2 and hydroxyethyl disulfide by Plrx is negligible. Furthermore, plasmoredoxin provides electrons for ribonucleotide reductase, the enzyme catalyzing the first step of DNA synthesis. As demonstrated by Western blotting, the protein is present in blood-stage forms of malarial parasites. Based on these results, plasmoredoxin offers the opportunity to improve diagnostic tools based on PCR or immunological reactions. It may also represent a specific target for antimalarial drug development and is of phylogenetic interest.  相似文献   

18.
Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula x Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and tertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.  相似文献   

19.
Glutaredoxins are small proteins with a conserved active site (-CXX(C/S)-) and thioredoxin fold. These thiol disulfide oxidoreductases catalyze disulfide reductions, preferring GSH-mixed disulfides as substrates. We have developed a new real-time fluorescence-based method for measuring the deglutathionylation activity of glutaredoxins using a glutathionylated peptide as a substrate. Mass spectrometric analysis showed that the only intermediate in the reaction is the glutaredoxin-GSH mixed disulfide. This specificity was solely dependent on the unusual gamma-linkage present in glutathione. The deglutathionylation activity of both wild-type Escherichia coli glutaredoxin and the C14S mutant was competitively inhibited by oxidized glutathione, with K(i) values similar to the K(m) values for the glutathionylated peptide substrate, implying that glutaredoxin primarily recognizes the substrate via the glutathione moiety. In addition, wild-type glutaredoxin showed a sigmoidal dependence on GSH concentrations, the activity being significantly decreased at low GSH concentrations. Thus, under oxidative stress conditions, where the ratio of GSH/GSSG is decreased, the activity of glutaredoxin is dramatically reduced, and it will only have significant deglutathionylation activity once the oxidative stress has been removed. Different members of the protein disulfide isomerases (PDI) family showed lower activity levels when compared with glutaredoxins; however, their deglutathionylation activities were comparable with their oxidase activities. Furthermore, in contrast to the glutaredoxin-GSH mixed disulfide intermediate, the only intermediate in the PDI-catalyzed reaction was PDI peptide mixed disulfide.  相似文献   

20.
The determination of the NMR structure of oxidized Escherichia coli glutaredoxin in aqueous solution is described, and comparisons of this structure with that of reduced E. coli glutaredoxin and the related proteins E. coli thioredoxin and T4 glutaredoxin are presented. Based on nearly complete sequence-specific 1H-NMR assignments, 804 nuclear Overhauser enhancement distance constraints and 74 dihedral angle constraints were obtained as the input for the structure calculations, for which the distance geometry program DIANA was used followed by simulated annealing with the program X-PLOR. The molecular architecture of oxidized glutaredoxin is made up of three helices and a four-stranded beta-sheet. The three-dimensional structures of oxidized and the recently described reduced glutaredoxin are very similar. Quantitative analysis of the exchange rates of 34 slowly exchanging amide protons from corresponding series of two-dimensional [15N,1H]-correlated spectra of oxidized and reduced glutaredoxin showed close agreement, indicating almost identical hydrogen-bonding patterns. Nonetheless, differences in local dynamics involving residues near the active site and the C-terminal alpha-helix were clearly manifested. Comparison of the structure of E. coli glutaredoxin with those of T4 glutaredoxin and E. coli thioredoxin showed that all three proteins have a similar overall polypeptide fold. An area of the protein surface at the active site containing Arg 8, Cys 11, Pro 12, Tyr 13, Ile 38, Thr 58, Val 59, Pro 60, Gly 71, Tyr 72, and Thr 73 is proposed as a possible site for interaction with other proteins, in particular ribonucleotide reductase. It was found that this area corresponds to previously proposed interaction sites in T4 glutaredoxin and E. coli thioredoxin. The solvent-accessible surface area at the active site of E. coli glutaredoxin showed a general trend to increase upon reduction. Only the sulfhydryl group of Cys 11 is exposed to the solvent, whereas that of Cys 14 is buried and solvent inaccessible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号