首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To help clarify the role of DBF2, a previously described cell cycle protein kinase, high copy number suppressors of the dbf2 mutation were isolated. Three open reading frames (ORF) have been identified. One ORF encodes a protein which has homology to a human small nuclear riboprotein, while the remaining two are genes which have been identified previously, SIT4 and SPO12. SIT4 is known to have a role in the cell cycle but the nature of the interaction between SIT4 and dbf2 is unclear. SPO12 has until now been implicated exclusively in meiosis. However, we show that SPO12 is expressed during vegetative growth, moreover it is expressed under cell cycle control coordinately with DBF2. SPO12 is a nonessential gene, but it becomes essential in a DBF2 delete genetic background. Furthermore, detailed analysis of the cell cycle of SPO12 delete cells revealed a small but significant delay in mitosis. Therefore, SPO12 does have a role during vegetative growth and it probably functions in mitosis in association with DBF2.  相似文献   

3.
It has been hypothesized that a replication associated repair pathway operates on base damage and single strand breaks (SSB) at replication forks. In this study, we present the isolation from the nuclei of human cycling cells of a multiprotein complex containing most of the essential components of base excision repair (BER)/SSBR, including APE1, UNG2, XRCC1 and POLβ, DNA PK, replicative POLα, δ and , DNA ligase 1 and cell cycle regulatory protein cyclin A. Co-immunoprecipitation revealed that in this complex DNA repair proteins are physically associated to cyclin A and to DNA replication proteins including MCM7. This complex is endowed with DNA polymerase and protein kinase activity and is able to perform BER of uracil and AP sites. This finding suggests that a preassembled DNA repair machinery is constitutively active in cycling cells and is ready to be recruited at base damage and breaks occurring at replication forks.  相似文献   

4.
The Saccharomyces cerevisiae Cdc14 protein phosphatase and Dbf2 protein kinase have been implicated to act during late M phase, but their functions are not known. We report here that CDC14 is a low-copy suppressor of the dbf2-2 mutation at 37°?C. The kinase activity of Dbf2 accumulated at a high level, in vivo, during a cdc14 arrest and was also much higher in cdc14 mutant cells at the permissive temperature of growth, therefore in cycling mutant cells than in cycling wild-type cells. This correlated with the accumulation of the more slowly migrating form of Dbf2, previously shown to correspond to the hyperphosphorylated form of the protein. The finding that the dbf2-2 mutation could be rescued following overproduction of catalytically inactive forms of Cdc14 suggested that the control of Dbf2 activity by Cdc14 might be only indirect and independent of Cdc14 phosphatase activity. However, it was found that Cdc14 could form oligomers within the cell, thus leaving open the possibility that catalytically inactive Cdc14 might associate with wild-type Cdc14 and rescue dbf2-2 in a phosphatase-dependent manner. We confirmed that overexpression of CDC14 could rescue mutations in CDC15, which encodes another kinase also implicated to act in late M phase. Cells of a cdc15-2dbf2-2 double mutant died at temperatures much lower than did either single mutant, whereas there was only a slight additive phenotype in the cdc14-1 dbf2-2 and cdc14-1 cdc15-2 double mutant cells. Finally, functional association between Cdc14 and Dbf2 (and also Cdc15) was confirmed by the finding that the cdc14, dbf2 and cdc15 mutations could be partially rescued by the addition of 1.2?M sorbitol to the culture medium. Our data are the first to demonstrate a functional link between Cdc14 and Dbf2 based on both biochemical and genetic information.  相似文献   

5.
The mammalian homologue of the yeast cdc2 gene encodes a 34-kilodalton serine/threonine kinase that is a subunit of M phase-promoting factor. Recent studies have shown that p34cdc2 is also a major tyrosine-phosphorylated protein in HeLa cells and that its phosphotyrosine content is cell cycle regulated and related to its kinase activity. Here, we show that cdc2 is physically associated with and phosphorylated in vitro by a highly specific tyrosine kinase. Tyrosine phosphorylation of cdc2 in vitro occurs at tyrosine 15, the same site that is phosphorylated in vivo. The association between the two kinases takes place in the cytosolic compartment and involves cyclin B-associated cdc2. Evidence is presented that a substantial fraction of cytosolic cdc2 is hypophosphorylated, whereas nuclear cdc2 is hyperphosphorylated. Finally, we show that the tyrosine kinase associated with cdc2 may be a 67-kilodalton protein and is distinct from src, abl, fms, and other previously reported tyrosine kinases.  相似文献   

6.
Bestrophin is a 68-kDa basolateral plasma membrane protein expressed in retinal pigment epithelial cells (RPE). It is encoded by the VMD2 gene, which is mutated in Best macular dystrophy, a disease characterized by a depressed light peak in the electrooculogram. Recently it was proposed that bestrophin is a chloride channel responsible for generating the light peak. To investigate its function further, we immunoaffinity purified a bestrophin complex from RPE lysates and identified bestrophin and the beta-catalytic subunit of protein phosphatase 2A (PP2A) as members of the complex by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Protein-protein interaction between bestrophin and PP2Ac and the structural subunit of PP2A, PR65, was confirmed by reciprocal immunoprecipitation. The C-terminal cytoplasmic domain of bestrophin was sufficient for the interaction with PP2A as demonstrated by a pulldown assay using a fusion of this domain with glutathione S-transferase. Bestrophin was phosphorylated when expressed in RPE-J cells and this phosphorylation was sensitive to okadaic acid. Purified PP2A effectively dephosphorylated bestrophin in vitro. These data suggest that bestrophin is in the signal transduction pathway that modulates the light peak of the electrooculogram, that it is regulated by phosphorylation, and that phosphorylation of bestrophin is in turn regulated by PP2A.  相似文献   

7.
We have isolated the full-length sequence for a unique human kinase, designated TTK. TTK was initially identified by screening of a T cell expression library with anti-phosphotyrosine antibodies. The kinases most closely related to TTK are the SPK1 serine, threonine and tyrosine kinase, the Pim1, PBS2, and CDC2 serine/threonine kinases, and the TIK kinase which was also identified through screening of an expression library with anti-phosphotyrosine antibodies. However, the relationships are distant with less than 25% identity. Nevertheless, TTK is highly conserved throughout phylogeny with hybridizing sequences being detected in mammals, fish, and yeast. TTK mRNA is present at relatively high levels in testis and thymus, tissues which contain a large number of proliferating cells, but is not detected in most other benign tissues. Freshly isolated cells from most malignant tumors assessed expressed TTK mRNA. As well, all rapidly proliferating cell lines tested expressed TTK mRNA. Escherichia coli expressing the complete kinase domain of TTK contain markedly elevated levels of phosphoserine and phosphothreonine as well as slightly increased levels of phosphotyrosine. Taken together, these findings suggest that expression of TTK, a previously unidentified member of the family of kinases which can phosphorylate serine, threonine, and tyrosine hydroxyamino acids, is associated with cell proliferation.  相似文献   

8.
The Saccharomyces cerevisiae Cdc14 protein phosphatase and Dbf2 protein kinase have been implicated to act during late M phase, but their functions are not known. We report here that CDC14 is a low-copy suppressor of the dbf2-2 mutation at 37° C. The kinase activity of Dbf2 accumulated at a high level, in vivo, during a cdc14 arrest and was also much higher in cdc14 mutant cells at the permissive temperature of growth, therefore in cycling mutant cells than in cycling wild-type cells. This correlated with the accumulation of the more slowly migrating form of Dbf2, previously shown to correspond to the hyperphosphorylated form of the protein. The finding that the dbf2-2 mutation could be rescued following overproduction of catalytically inactive forms of Cdc14 suggested that the control of Dbf2 activity by Cdc14 might be only indirect and independent of Cdc14 phosphatase activity. However, it was found that Cdc14 could form oligomers within the cell, thus leaving open the possibility that catalytically inactive Cdc14 might associate with wild-type Cdc14 and rescue dbf2-2 in a phosphatase-dependent manner. We confirmed that overexpression of CDC14 could rescue mutations in CDC15, which encodes another kinase also implicated to act in late M phase. Cells of a cdc15-2dbf2-2 double mutant died at temperatures much lower than did either single mutant, whereas there was only a slight additive phenotype in the cdc14-1 dbf2-2 and cdc14-1 cdc15-2 double mutant cells. Finally, functional association between Cdc14 and Dbf2 (and also Cdc15) was confirmed by the finding that the cdc14, dbf2 and cdc15 mutations could be partially rescued by the addition of 1.2 M sorbitol to the culture medium. Our data are the first to demonstrate a functional link between Cdc14 and Dbf2 based on both biochemical and genetic information. Received: 19 September 1997 / Accepted: 4 December 1997  相似文献   

9.
10.
《The Journal of cell biology》1990,111(6):2785-2794
Phagocytosis by monocytes or neutrophils can be enhanced by interaction with several proteins or synthetic peptides containing the Arg-Gly-Asp sequence. Recently we showed that an mAb, B6H12, specifically inhibited this enhancement of neutrophil phagocytosis by inhibiting Arg-Gly-Asp binding to the leukocyte response integrin (Gresham, H. D., J. L. Goodwin, P. M. Allen, D. C. Anderson, and E. J. Brown. 1989. J. Cell Biol. 108:1935-1943). Now, we have purified the antigen recognized by B6H12 to homogeneity. Surprisingly, it is a 50-kD molecule that is expressed on the plasma membranes of all hematopoietic cells, including erythrocytes, which express no known integrins. On platelets and placenta, but not on erythrocytes, this protein is associated with an integrin that can be recognized by an anti-beta 3 antibody. In addition, both the anti-beta 3 and several mAbs recognizing the 50-kD protein inhibit Arg-Gly-Asp stimulation of phagocytosis. These data demonstrate an association between integrins and the 50-kD protein on several cell types. For this reason, we call it Integrin-associated Protein (IAP). We hypothesize that IAP may play a role in signal transduction for enhanced phagocytosis by Arg-Gly-Asp ligands.  相似文献   

11.
12.
Dcp1 plays a key role in the mRNA decay process in Saccharomyces cerevisiae, cleaving off the 5' cap to leave an end susceptible to exonucleolytic degradation. The eukaryotic initiation factor complex eIF4F, which in yeast contains the core components eIF4E and eIF4G, uses the cap as a binding site, serving as an initial point of assembly for the translation apparatus, and also binds the poly(A) binding protein Pab1. We show that Dcp1 binds to eIF4G and Pab1 as free proteins, as well as to the complex eIF4E-eIF4G-Pab1. Dcp1 interacts with the N-terminal region of eIF4G but does not compete significantly with eIF4E or Pab1 for binding to eIF4G. Most importantly, eIF4G acts as a function-enhancing recruitment factor for Dcp1. However, eIF4E blocks this effect as a component of the high affinity cap-binding complex eIF4E-eIF4G. Indeed, cooperative enhancement of the eIF4E-cap interaction stabilizes yeast mRNAs in vivo. These data on interactions at the interface between translation and mRNA decay suggest how events at the 5' cap and 3' poly(A) tail might be coupled.  相似文献   

13.
The protein product (pRB) of the retinoblastoma susceptibility gene functions as a negative regulator of cell proliferation, and its activity appears to be modulated by phosphorylation. Using a new panel of anti-human pRB monoclonal antibodies, we have investigated the biochemical properties of this protein. These antibodies have allowed us to detect a pRB-associated kinase that has been identified as the cell cycle-regulating kinase p34cdc2 or a closely related enzyme. Since this associated kinase phosphorylates pRB at most of the sites used in vivo, these results suggest that this kinase is one of the major regulators of pRB. The associated kinase activity follows the pattern of phosphorylation seen for pRB in vivo. The associated kinase activity is not seen in the G1 phase but appears in the S phase, and the levels continue to increase throughout the remainder of the cell cycle.  相似文献   

14.
15.
The subcellular distribution of the type II enzyme of cAMP-dependent protein kinase (cAMP-dPK II) in epithelial and fibroblastic cells was determined by indirect immunofluorescence microscopy. In interphase cells both regulatory (R II) and catalytic (C) subunits were concentrated in a perinuclear area. By comparison of the R II distribution with the location of a bona fide Golgi membrane constituent, this area was identified as the Golgi complex. The cytochemical localization of R II was confirmed by subcellular fractionation. In addition, cAMP-dPK II was associated with microtubule-organizing centers, in particular with mitotic spindle poles. These distributions of cAMP-dPK II probably represent important factors in mediating the effects of cAMP on basic cellular activities ranging from secretion and proliferation to cell shape and motility.  相似文献   

16.
In complex with the immunophilin FKBP12, the natural product rapamycin inhibits signal transduction events required for G1 to S phase cell cycle progression in yeast and mammalian cells. Genetic studies in yeast first implicated the TOR1 and TOR2 proteins as targets of the FKBP12-rapamycin complex. We report here that the TOR2 protein is membrane associated and localized to the surface of the yeast vacuole. Immunoprecipitated TOR2 protein contains readily detectable phosphatidylinositol-4 (PI-4) kinase activity attributable to either a TOR2 intrinsic activity or to a PI-4 kinase tightly associated with TOR2. Importantly, we find that rapamycin stimulates FKBP12 binding to wild-type TOR2 but not to a rapamycin-resistant TOR2-1 mutant protein. Surprisingly, FKBP12-rapamycin binding does not markedly inhibit the PI kinase activity associated with TOR2, but does cause a delocalization of TOR2 from the vacuolar surface, which may deprive the TOR2-associated PI-4 kinase activity of its in vivo substrate. Several additional findings indicate that vacuolar localization is important for TOR2 function and, conversely, that TOR2 modulates vacuolar morphology and segregation. These studies demonstrate that TOR2 is an essential, highly conserved component of a signal transduction pathway regulating cell cycle progression conserved from yeast to man.  相似文献   

17.
B cell linker protein (BLNK) is a SLP-76-related adaptor protein essential for signal transduction from the BCR. To identify components of BLNK-associated signaling pathways, we performed a phosphorylation-dependent yeast two-hybrid analysis using BLNK probes. Here we report that the serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1), which is activated upon antigen-receptor stimulation and which has been implicated in the regulation of MAP kinase pathways, interacts physically and functionally with BLNK in B cells and with SLP-76 in T cells. This interaction requires Tyr(379) of HPK1 and the Src homology 2 (SH2) domain of BLNK/SLP-76. Via homology modeling, we defined a consensus binding site within ligands for SLP family SH2 domains. We further demonstrate that the SH2 domain of SLP-76 participates in the regulation of AP-1 and NFAT activation in response to T cell receptor (TCR) stimulation and that HPK1 inhibits AP-1 activation in a manner partially dependent on its interaction with SLP-76. Our data are consistent with a model in which full activation of HPK1 requires its own phosphorylation on tyrosine and subsequent interaction with adaptors of the SLP family, providing a mechanistic basis for the integration of this kinase into antigen receptor signaling cascades.  相似文献   

18.
We have previously isolated the hpttg proto-oncogene, which is expressed in normal tissues containing proliferating cells and in several kinds of tumors. In fact, expression of hPTTG correlates with cell proliferation in a cell cycle-dependent manner. Recently it was reported that PTTG is a vertebrate analog of the yeast securins Pds1 and Cut2, which are involved in sister chromatid separation. Here we show that hPTTG binds to Ku, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). hPTTG and Ku associate both in vitro and in vivo and the DNA-PK catalytic subunit phosphorylates hPTTG in vitro. Furthermore, DNA double-strand breaks prevent hPTTG–Ku association and disrupt the hPTTG–Ku complexes, indicating that genome damaging events, which result in the induction of pathways that activate DNA repair mechanisms and halt cell cycle progression, might inhibit hPTTG–Ku interaction in vivo. We propose that hPTTG might connect DNA damage-response pathways with sister chromatid separation, delaying the onset of mitosis while DNA repair occurs.  相似文献   

19.
The life cycle of African trypanosomes is characterized by the alternation of proliferative and quiescent stages but the molecular details of this process remain unknown. Here, we describe a new cytoplasmic protein kinase from Trypanosoma brucei, termed TBPK50, that belongs to a family of protein kinases involved in the regulation of the cell cycle, cell shape and proliferation. TBPK50 is expressed only in proliferative forms but is totally absent in quiescent cells despite the fact that the gene is constitutively transcribed at the same level throughout the life cycle. It is probable that TBPK50 has very specific substrate requirements as it was unable to transphosphorylate a range of classical phosphoacceptor substrates in vitro, although an autophosphorylation activity was readily detectable in the same assays. Complementation studies using a fission yeast mutant demonstrated that TBPK50 is a functional homologue of Orb6, a protein kinase involved in the regulation of cellular morphology and cell cycle progression in yeast. These results link the expression of TBPK50 and the growth status of trypanosomes and support the view that this protein kinase is likely to be involved in the control of life cycle progression and cell division of these parasites.  相似文献   

20.
Ghosh AS  Ray D  Dutta S  Raha S 《PloS one》2010,5(10):e13291
Mitogen Activated Protein Kinases (MAPKs) are a class of serine/threonine kinases that regulate a number of different cellular activities including cell proliferation, differentiation, survival and even death. The pathogen Entamoeba histolytica possess a single homologue of a typical MAPK gene (EhMAPK) whose identification was previously reported by us but its functional implications remained unexplored. EhMAPK, the only mitogen-activated protein kinase from the parasitic protist Entamoeba histolytica with Threonine-X-Tyrosine (TXY) phosphorylation motif was cloned, expressed in E. coli and functionally characterized under different stress conditions. The expression profile of EhMAPK at the protein and mRNA level remained similar among untreated, heat shocked and hydrogen peroxide-treated samples in all cases of dose and time. But a significant difference was obtained in the phosphorylation status of the protein in response to different stresses. Heat shock at 43°C or 0.5 mM H(2)O(2) treatment enhanced the phosphorylation status of EhMAPK and augmented the kinase activity of the protein whereas 2.0 mM H(2)O(2) treatment induced dephosphorylation of EhMAPK and loss of kinase activity. 2.0 mM H(2)O(2) treatment reduced parasite viability significantly but heat shock and 0.5 mM H(2)O(2) treatment failed to adversely affect E. histolytica viability. Therefore, a distinct possibility that activation of EhMAPK is associated with stress survival in E. histolytica is seen. Our study also gives a glimpse of the regulatory mechanism of the protein under in vivo conditions. Since the parasite genome lacks any typical homologue of mammalian MEK, the dual specificity kinases which are the upstream activators of MAPK, indications of the existence of some alternate regulatory mechanisms of the EhMAPK activity is perceived. These may include the autophosphorylation activity of the protein itself in combination with some upstream phosphatases which are not yet identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号