首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Entry into the host bacterial cell is one of the least understood steps in the life cycle of bacteriophages. The different envelopes of Gram-negative and Gram-positive bacteria, with a fluid outer membrane and exposing a thick peptidoglycan wall to the environment respectively, impose distinct challenges for bacteriophage binding and (re)distribution on the bacterial surface. Here, infection of the Gram-positive rod-shaped bacterium Bacillus subtilis by bacteriophage SPP1 was monitored in space and time. We found that SPP1 reversible adsorption occurs preferentially at the cell poles. This initial binding facilitates irreversible adsorption to the SPP1 phage receptor protein YueB, which is encoded by a putative type VII secretion system gene cluster. YueB was found to concentrate at the cell poles and to display a punctate peripheral distribution along the sidewalls of B. subtilis cells. The kinetics of SPP1 DNA entry and replication were visualized during infection. Most of the infecting phages DNA entered and initiated replication near the cell poles. Altogether, our results reveal that the preferentially polar topology of SPP1 receptors on the surface of the host cell determines the site of phage DNA entry and subsequent replication, which occurs in discrete foci.  相似文献   

2.
An analysis of UV-damages accumulation in the phages as revealed by delay of intracellular growth is represented using temperate lambda phage. The maximum of growth delay of phage lambda at given UV-dose was found with lambda red+, infecting Escherichia coli AB1886 uvrA strain. The growth delay was absent, when a strain RH-1 uvrA-recA- was infected with UV-irradiated phage lambda red3. A moderate growth delay was obtained with the phages lambda red+, infecting E. coli RH-1 uvrA-recA- or phage lambda red3, infecting E. coli AB1886 uvrA-. THe growth delay was also absent when wild type, recA- and uvrA mutants of E. coli were infected with phage lambda after 8-metnoxypsoralen + light (lambda > 310 nm) treatment. It is known that the crosslinks appear to be the DNA defects which give rise to the observed biological inactivation following psoralen + light treatment. However, a considerable growth delay of phage lambda, treated by 8-metnoxypsoralen + light, was only found under condition of crosslinks repair (W-reactivation and prophage-reactivation). The results obtained are best explained by the assumption that the growth delay reflects the time required for the postreplication repair (RecA, LexA, Red) of any lethal UV-lesion.  相似文献   

3.
The insertion of a particular phi X DNA sequence in the plasmid pACYC177 strongly decreased the capacity of Escherichia coli cells containing such a plasmid to propagate bacteriophage phi X174. The smallest DNA sequence tested that showed the effect was the HindII fragment R4. This fragment does not code for a complete protein. It contains the sequence specifying the C-terminal part of the gene H protein and the N-terminal part of the gene A protein, as well as the noncoding region between these genes. Analysis of cells that contain plasmids with the "reduction sequence" showed that (i) the adsorption of the phages to the host cells is normal, (ii) in a single infection cycle much less phage is formed, (iii) only 10% of the infecting viral single-stranded DNA is converted to double-stranded replicative-form DNA, and (iv) less progeny replicative form DNA is synthesized. The reduction process is phi X174 specific, since the growth of the related G4 and St-1 phages was not affected in these cells. The effect of the recombinant plasmids on infecting phage DNA shows similarity to the process of superinfection exclusion.  相似文献   

4.
Barnhart, Benjamin J. (Los Alamos Scientific Laboratory, University of California, Los Alamos, N.M.). Kinetics of bacteriophage lambda deoxyribonucleic acid infection of Escherichia coli. J. Bacteriol. 90:1617-1623. 1965.-The kinetics of Escherichia coli K-12 infection by phage lambda deoxyribonucleic acid (DNA) were determined. An initial lag of 55 to 80 sec was found to be the time required for infecting DNA to become deoxyribonuclease-insensitive at 33 C. When cell-DNA interactions were stopped by washing away unbound DNA, the already bound DNA continued to infect the cell at rates described by linear kinetics with no apparent lag. Whereas the lag period was relatively insensitive to DNA and cell concentrations, both the lag and the subsequent linear portions of the rate curves were temperature-sensitive. Cell and DNA dose-response curves prescribed hyperbolic functions. Similarities between lambda DNA infection of E. coli and bacterial transformation systems are discussed.  相似文献   

5.
6.
7.
Two recombinant lambda DNAs, lambda gt::pMB9 and lambda NM::pBR322, containing, respectively, the pMB9 and pBR322 replicon were constructed and characterized. Both constructs (phagemid DNAs) transfect Escherichia coli cells, producing mature infectious phage progenies. Alternatively, drug-resistant colonies of transductants can be selected upon infection with these phages (phagemid particles) that maintain phagemid DNA in the cell in the form of covalently closed circular plasmids. The efficiency of transduction for nonlysogenic E. coli strains with lambda gt::pMB9 phage producing lambda repressor cIts ranges from 10(-7) to 10(-2) transductant colonies per input phage, depending on the temperature and strain used, while lambda NM::pBR322 phage carrying imm21 transduces with a frequency of up to 1. This means that each lambda NM::pBR322 phagemid particle is capable of establishing itself in the cell as a nonlethal plasmid, permitting formation of a resistant bacterial colony. The maximal level of transduction with lambda gt::pMB9 was obtained when E. coli cells lysogenic for lambda were used. Thus, we believe that the efficiency of transduction is determined by the turn-on of the phage repressor in the transductant. In addition, we have found that all lambda gt::pMB9-containing transductants under certain conditions harbor precisely excised pMB9; excision of pBR322 from lambda NM::pBR322 has not been observed.  相似文献   

8.
9.
A fragment of DNA (3.1 kilobases [kb]) from a ColE1 Escherichia coli DNA hybrid plasmid containing the bacterial citrate synthase gene (gltA) was subcloned in both orientations into phage lambda vectors by in vitro recombination. The resulting phages were able to transduce gltA and, as prophages, complemented the lesion of a gltA mutant, showing that a functional gltA gene is contained in the 3.1-kb fragment. The segment of E. coli DNA cloned in these lambda gltA phages was extended in vivo by prophage integration and aberrant excision in the gltA region. Plaque-forming derivatives, carrying up to three additional tricarboxylic acid cycle genes, succinate dehydrogenase (sdh), 2-oxoglutarate dehydrogenase (sucA), and dihydrolipoamide succinyltransferase (sucB), were isolated and characterized by their transducing and complementing activities with corresponding mutants, and the order of the genes was confirmed as gltA-sdh-sucA-sucB. Physical maps of a variety of the transducing phages showed that the four tricarboxylic acid cycle genes are contained in a 12.8-kb segment of bacterial DNA. The four gene products, plus a possible succinate dehydrogenase small subunit, were identified in postinfection labeling studies, and the polarities of gene expression were defined as counterclockwise for gltA and clockwise for sdh, sucA, and sucB, relative to the E. coli linkage map.  相似文献   

10.
The system comprising bacteriophage (phage) lambda and the bacterium E. coli has long served as a paradigm for cell-fate determination. Following the simultaneous infection of the cell by a number of phages, one of two pathways is chosen: lytic (virulent) or lysogenic (dormant). We recently developed a method for fluorescently labeling individual phages, and were able to examine the post-infection decision in real-time under the microscope, at the level of individual phages and cells. Here, we describe the full procedure for performing the infection experiments described in our earlier work. This includes the creation of fluorescent phages, infection of the cells, imaging under the microscope and data analysis. The fluorescent phage is a "hybrid", co-expressing wild- type and YFP-fusion versions of the capsid gpD protein. A crude phage lysate is first obtained by inducing a lysogen of the gpD-EYFP (Enhanced Yellow Fluorescent Protein) phage, harboring a plasmid expressing wild type gpD. A series of purification steps are then performed, followed by DAPI-labeling and imaging under the microscope. This is done in order to verify the uniformity, DNA packaging efficiency, fluorescence signal and structural stability of the phage stock. The initial adsorption of phages to bacteria is performed on ice, then followed by a short incubation at 35°C to trigger viral DNA injection. The phage/bacteria mixture is then moved to the surface of a thin nutrient agar slab, covered with a coverslip and imaged under an epifluorescence microscope. The post-infection process is followed for 4 hr, at 10 min interval. Multiple stage positions are tracked such that ~100 cell infections can be traced in a single experiment. At each position and time point, images are acquired in the phase-contrast and red and green fluorescent channels. The phase-contrast image is used later for automated cell recognition while the fluorescent channels are used to characterize the infection outcome: production of new fluorescent phages (green) followed by cell lysis, or expression of lysogeny factors (red) followed by resumed cell growth and division. The acquired time-lapse movies are processed using a combination of manual and automated methods. Data analysis results in the identification of infection parameters for each infection event (e.g. number and positions of infecting phages) as well as infection outcome (lysis/lysogeny). Additional parameters can be extracted if desired.  相似文献   

11.
Site-specific recombination by phages lambda and P22 is carried out by multiprotein-DNA complexes. Integration host factor (IHF) facilitates lambda site-specific recombination by inducing DNA bends necessary to form an active recombinogenic complex. Mutants lacking IHF are over 1,000-fold less proficient in supporting lambda site-specific recombination than wild-type cells. Although the attP region of P22 contains strong IHF binding sites, in vivo measurements of integration and excision frequencies showed that infecting P22 phages can perform site-specific recombination to its maximum efficiency in the absence of IHF. In addition, a plasmid integration assay showed that integrative recombination occurs equally well in wild-type and ihfA mutant cells. P22 integrative recombination is also efficient in Escherichia coli in the absence of functional IHF. These results suggest that nucleoprotein structures proficient for recombination can form in the absence of IHF or that another factor(s) can substitute for IHF in the formation of complexes.  相似文献   

12.
A Ishikawa  H Ikeda 《Gene》1983,21(3):211-216
Dictyostelium discoideum myxamoebae were cultured with Escherichia coli cells infected with lambda phage in the presence of chloramphenicol. After eliminating the uningested bacteria by repeated centrifugation in a Percoll gradient, we examined the myxamoeba cytoplasm (not the food vacuole) for the presence of phage DNA. A significant amount of DNA extracted from the myxamoebae was hybridizable with purified phage lambda DNA, and capable of forming phage particles when packaged in vitro with phage lambda proteins. The EcoRI restriction maps of the phages recovered from the plaques were identical to that of the infecting phage. These results strongly suggest that phage DNA molecules were taken up by the cellular slime mold cells and that at least some fraction existed in intact form.  相似文献   

13.
S Finkel  C Halling  R Calendar 《Gene》1986,46(1):65-69
The old gene product of the P2 prophage interferes with plaque formation by lambda wild type phage but allows lambda phages whose red and gam genes have been deleted to form small, visible plaques (the lambda Spi- phenotype). The old gene product also kills Escherichia coli recB or recC mutants. We have cloned the old gene into the high-copy-number plasmid pBR322, where it prevents plaque formation by both lambda Spi+ and lambda Spi- phages. We transferred a DNA fragment that carries the old gene to the low-copy-number plasmid pSC101 and found that lambda Spi- phages can be selected on strains that carry this plasmid. The plasmid-borne old gene kills E. coli recB mutants, providing a selection for old- mutants.  相似文献   

14.
Human uracil-DNA glycosylase complements E. coli ung mutants.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have previously isolated a cDNA encoding a human uracil-DNA glycosylase which is closely related to the bacterial and yeast enzymes. In vitro expression of this cDNA produced a protein with an apparent molecular weight of 34 K in agreement with the size predicted from the sequence data. The in vitro expressed protein exhibited uracil-DNA glycosylase activity. The close resemblance between the human and the bacterial enzyme raised the possibility that the human enzyme may be able to complement E. coli ung mutants. In order to test this hypothesis, the human uracil-DNA glycosylase cDNA was established in a bacterial expression vector. Expression of the human enzyme as a LacZ alpha-humUNG fusion protein was then studied in E. coli ung mutants. E. coli cells lacking uracil-DNA glycosylase activity exhibit a weak mutator phenotype and they are permissive for growth of phages with uracil-containing DNA. Here we show that the expression of human uracil-DNA glycosylase in E. coli can restore the wild type phenotype of ung mutants. These results demonstrate that the evolutionary conservation of the uracil-DNA glycosylase structure is also reflected in the conservation of the mechanism for removal of uracil from DNA.  相似文献   

15.
The recent boom in phage therapy and phage biocontrol requires the design of suitable cocktails of genetically different bacteriophages. The current methods for typing phages need significant quantities of purified DNA, may require a priori genetic information and are cost and time consuming. We have evaluated the randomly amplified polymorphic DNA (RAPD)-PCR technique to produce unique and reproducible band patterns from 26 different bacteriophages infecting Staphylococcus epidermidis, Staphylococcus aureus, Lactococcus lactis, Escherichia coli, Streptococcus thermophilus, Bacillus subtilis and Lactobacillus casei bacterial strains. Initially, purified DNA and phage suspensions of seven selected phages were used as a template. The conditions that were found to be optimal 8 μM of 10-mer primers, 3 μM magnesium oxalacetate and 5% dimethyl sulfoxide. The RAPD genomic fingerprints using a phage titer suspension higher than 10(9) PFU mL(-1) were highly reproducible. Clustering by the Pearson correlation coefficient and the unweighted pair group method with arithmetic averages clustering algorithm correlated largely with genetically different phages infecting the same bacterial species, although closely related phages with a similar DNA restriction pattern were indistinguishable. The results support the use of RAPD-PCR for quick typing of phage isolates and preliminary assessment of their genetic diversity bypassing tedious DNA purification protocols and previous knowledge of their sequence.  相似文献   

16.
The work is concerned with studying the breakdown of proteins and RNA when a polyauxotrophic Escherichia coli strain is incubated in a salt solution without amino acids, phosphorus, nitrogen and glucose at 43 degrees C as well as the ability of starving bacterial cells to recommence protein and RNA synthesis (also in the course of phage T4 infection) and to reproduce bacteriophages T4, lambda and MS2. Within the first two hours of the incubation, 12% of proteins and 40% of RNA break down to acid-soluble fragments. Then protein degradation stops while RNA decomposition goes on, but at a lower rate. Within 4-6 h of starvation, the rate of protein and RNA synthesis drops down 4-5 times and the survival rate equals 40-60% when the cells are transferred onto a complete medium. The quantitative characteristics of phages T4, lambda and MS2 reproduction fall down in prestarved cells. The authors speculate that E. coli cells die off in the course of starvation not because some unique structure is destroyed, but owing to the fact that the activity of enzymes and ribosomes gradually declines. As a result, the synthetic activity of the cell drops down abruptly and irreversibly because the enzymes are inactivated and RNA breaks down, which eventually causes cell death.  相似文献   

17.
Transducing lambda phages have been isolated that carry segments of the Escherichia coli chromosome in the aspC region, 20.5 min on the E. coli map. One of these phages, lambda aspC2, carries rpsA, the structural gene for the ribosomal protein S1. A three kilobase fragment from this phage, cloned into either the plasmid pACYC184 or the plasmid pBR322, was found to express S1. In cells carrying the rpsA gene on the high copy number plasmid pBR322 the rate of rpsA mRNA synthesis was increased 40-fold, whereas the rate of protein S1 synthesis was doubled, in comparison with these rates in an rpsA haploid.  相似文献   

18.
Identifying and eliminating endogenous bacterial enzyme systems can significantly increase the efficiency of propagation of eukaryotic DNA in Escherichia coli. We have recently examined one such system which inhibits the propagation of lambda DNA rescued from transgenic mouse tissues. This rescue procedure utilizes lambda packaging extracts for excision of the lambda DNA from the transgenic mouse genome, as well as E. coli cells for subsequent infection and propagation. This assay, in combination with conjugal mating, P1 transduction, and gene cloning, was used to identify and characterize the E. coli locus responsible for this difference in efficiency. It was determined that the E. coli K-12 mcrB gene when expressed on a high-copy-number plasmid can cause a decrease in rescue efficiency despite the presence of the mcrB1 mutation, which inactivates the classic McrB restriction activity. (This mutation was verified by sequence analysis.) However, this McrB1 activity is not observed when the cloned mcrB1 gene is inserted into the E. coli genome at one copy per chromosome. A second locus was identified which causes a decrease in rescue efficiency both when expressed on a high-copy-number plasmid and when inserted into the genome. The data presented here suggest that this locus is mrr and that the mrr gene product can recognize and restrict cytosine-methylated sequences. Removal of this DNA region including the mrr gene from E. coli K-12 strains allows high rescue efficiencies equal to those of E. coli C strains. These modified E. coli K-12 plating strains and lambda packaging extract strains should also allow a significant improvement in the efficiency and representation of eukaryotic genomic and cDNA libraries.  相似文献   

19.
A series of lambda defective ilvC specialized transducing phage has been isolated which carry regions of isoleucine and valine structural and regulatory genes derived from the ilv cluster at minute 83 on the linkage map of the chromosome of Escherichia coli K-12. The ilv genes carried by these phages and their order have been determined by transduction of auxotrophs. The ilvC+ lysogen of an ilvC- strain gave rise, after heat induction of the lysogen, to transducing particles which carried the wild-type allele of the cya-marker. Further experiments have shown that the lambda defective ilvC phages were able to cotransduce a rho-15ts mutation as well as a rep-5 mutation. Hence, the order of the clockwise excision of the ilv cluster was found to be ilvC-rho-rep-cya. Enzyme levels in strains carrying the lambda defective ilvC phages indicated the the ilvC gene was not altered by the insertion of lambda into the ilv cluster. The isolation and digestion of lambda defective ilvC DNA by EcoRI and HindIII restriction endonucleases demonstrated that the specialized transducing phages carried part of the genome from the E. coli K-12 chromosome.  相似文献   

20.
Ultraviolet-induced restriction alleviation is an SOS function which partially relieves the K-12-specific DNA restriction in Escherichia coli. Restriction alleviation is determined by observing elevated survival of unmodified phage lambda in cells irradiated with ultraviolet prior to infection. We demonstrate that restriction of lambda is also relieved when log-phase cells are irradiated as late as 50 min after adsorption of lambda. At this time more than 60% of the lambda DNA is already released as acid-soluble material from the cells. Experiments involving reextraction of lambda DNA from infected cells and a mild detergent treatment removing absorbed phages from the cellular surface showed that only a small specific fraction of all lambda infections is destined to escape restriction due to restriction alleviation. This fraction (10-20%) has a retarded mode of DNA injection (60 min or longer) after adsorption which allows the expression of the restriction alleviation function before the phage DNA is exposed to restriction endonucleases. This behaviour of a fraction of lambda phages explains why the SOS function restriction alleviation could initially be discovered. We show that the retarded mode of DNA injection is not required for another SOS function acting on lambda DNA, the increased repair of ultraviolet-irradiated DNA (Weigle reactivation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号