首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies showed that valyl-tRNA synthetase of Saccharomyces cerevisiae contains an N-terminal polypeptide extension of 97 residues, which is absent from its bacterial relatives, but is conserved in its mammalian homologues. We showed herein that this appended domain and its human counterpart are both nonspecific tRNA-binding domains (K(d) approximately 0.5 microm). Deletion of the appended domain from the yeast enzyme severely impaired its tRNA binding, aminoacylation, and complementation activities. This N-domain-deleted yeast valyl-tRNA synthetase mutant could be rescued by fusion of the equivalent domain from its human homologue. Moreover, fusion of the N-domain of the yeast enzyme or its human counterpart to Escherichia coli glutaminyl-tRNA synthetase enabled the otherwise "inactive" prokaryotic enzyme to function as a yeast enzyme in vivo. Different from the native yeast enzyme, which showed different affinities toward mixed tRNA populations, the fusion enzyme exhibited similar binding affinities for all yeast tRNAs. These results not only underscore the significance of nonspecific tRNA binding in aminoacylation, but also provide insights into the mechanism of the formation of aminoacyl-tRNAs.  相似文献   

2.
We show here that nonspecific RNA-protein interactions can significantly enhance the biological activity of an essential RNA. protein complex. Bacterial glutaminyl-tRNA synthetase poorly aminoacylates yeast tRNA and, as a consequence, cannot rescue a knockout allele of the gene for the yeast homologue. In contrast to the bacterial protein, the yeast enzyme has an extra appended domain at the N terminus. Previously, we showed that fusion of this yeast-specific domain to the bacterial protein enabled it to function as a yeast enzyme in vivo and in vitro. We suggested that the novel yeast-specific domain contributed to RNA interactions in a way that compensated for the poor fit between the yeast tRNA and bacterial enzyme. Here we establish that the novel appended domain by itself binds nonspecifically to different RNA structures. In addition, we show that fusion of an unrelated yeast protein, Arc1p, to the bacterial enzyme also converts it into a functional yeast enzyme in vivo and in vitro. A small C-terminal segment of Arc1p is necessary and sufficient for this conversion. This segment was shown by others to have nonspecific tRNA binding properties. Thus, nonspecific RNA binding interactions in general can compensate for barriers to formation of a specific and essential RNA.protein complex.  相似文献   

3.
The charging of glutamate on tRNA(Glu) is catalyzed by glutamyl-tRNA synthetase, a monomer of 53.8 kilodaltons in Escherichia coli. To obtain the large amounts of enzyme necessary for the identification of structural domains, we have inserted the structural gene gltX in the conditional runaway-replication plasmid pOU61, which led to a 350-fold overproduction of glutamyl-tRNA synthetase. Partial proteolysis of this enzyme revealed the existence of preferential sites of attack that, according to their N-terminal sequences, delimit regions of 12.9, 2.3, 12.1, and 26.5 kilodaltons from the N- to C-terminal of the enzyme. Their sizes suggest that the 2.3-kilodalton fragment is a hinge structure, and that those of 12.9, 12.1, and 26.5 kilodaltons are domain structures. The 12.9-kilodalton domain of the glutamyl-tRNA synthetase of E. coli is the only long region of this enzyme displaying a good amino acid sequence similarity with the glutaminyl-tRNA synthetase of Escherichia coli.  相似文献   

4.
Transfer RNAs from Escherichia coli, yeast (Sacharomyces cerevisiae), and calf liver were subjected to controlled hydrolysis with venom exonuclease to remove 3'-terminal nucleotides, and then reconstructed successively with cytosine triphosphate (CTP) and 2'- or 3'-deoxyadenosine 5'-triphosphate in the presence of yeast CTP(ATP):tRNA nucleotidyltransferase. The modified tRNAs were purified by chromatography on DBAE-cellulose or acetylated DBAE-cellulose and then utilized in tRNA aminoacylation experiments in the presence of the homologous aminoacyl-tRNA synthetase activities. The E. coli, yeast, and calf liver aminoacyl-tRNA synthetases specific for alanine, glycine, histidine, lysine, serine, and threonine, as well as the E. coli and yeast prolyl-tRNA synthetases and the yeast glutaminyl-tRNA synthetase utilized only those homologous modified tRNAs terminating in 2'-deoxyadenosine (i.e., having an available 3'-OH group). This is interpreted as evidence that these aminoacyl-tRNA synthetases normally aminoacylate their unmodified cognate tRNAs on the 3'-OH group. The aminoacyl-tRNA synthetases from all three sources specific argining, isoleucine, leucine, phenylalanine, and valine, as well as the E. coli and yeast enzymes specific for methionine and the E. coli glutamyl-tRNA synthetase, used as substrates exclusively those tRNAs terminating in 3'-deoxyadenosine. Certain aminoacyl-tRNA synthetases, including the E. coli, yeast, and calf liver asparagine and tyrosine activating enzymes, the E. coli and yeast cysteinyl-tRNA synthetases, and the aspartyl-tRNA synthetase from yeast, utilized both isomeric tRNAs as substrates, although generally not at the same rate. While the calf liver aspartyl- and cysteinyl-tRNA synthetases utilized only the corresponding modified tRNA species terminating in 2'-deoxyadenosine, the use of a more concentrated enzyme preparation might well result in aminoacylation of the isomeric species. The one tRNA for which positional specificity does seem to have changed during evolution is tryptophan, whose E. coli aminoacyl-tRNA synthetase utilized predominantly the cognate tRNA terminating in 3'-deoxyadenosine, while the corresponding yeast and calf liver enzymes were found to utilize predominantly the isomeric tRNAs terminating in 2'-deoxyadenosine. The data presented indicate that while there is considerable diversity in the initial position of aminoacylation of individual tRNA isoacceptors derived from a single source, positional specificity has generally been conserved during the evolution from a prokaryotic to mammalian organism.  相似文献   

5.
Several noncognate tRNA's from Escherichia coli were mischarged with glutamine by E. coli glutaminyl-tRNA synthetase if dimethylsulfoxide was present in the reaction mixture. Kinetic analysis of the mischarging revealed that dimethyl sulfoxide stimulated the misacylation by affecting the maximum velocity. Several noncognate tRNA's were shown to interact with glutaminyl-tRNA synthetase as measured by their ability to protect the enzyme against thermal inactivation or to replace cognate tRNA in stimulating glutamine-dependent ATP-PPi exchange reaction. These tRNA's, however, did not coincide with those which were mischargeable with glutamine.  相似文献   

6.
The interaction between phenylalanyl-tRNA synthetase from yeast and Escherichia coli and tRNAPhe (yeast), tRNASer (yeast), tRNA1Val (E. coli) has been investigated by ultracentrifugation analysis, fluorescence titrations and fast kinetic techniques. The fluorescence of the Y-base of tRNAPhe and the intrinsic fluorescence of the synthetases have been used as optical indicators. 1. Specific complexes between phenylalanyl-tRNA synthetase and tRNAPhe from yeast are formed in a two-step mechanism: a nearly diffusion-controlled recombination is followed by a fast conformational transition. Binding constants, rate constants and changes in the quantum yield of the Y-base fluorescence upon binding are given under a variety of conditions with respect to pH, added salt, concentration of Mg2+ ions and temperature. 2. Heterologous complexes between phenylalanyl-tRNA synthetase (E. coli) and tRNAPhe (yeast) are formed in a similar two-step mechanism as the specific complexes; the conformational transition, however, is slower by a factor 4-5. 3. Formation of non-specific complexes between phenylalanyl-tRNA synthetase (yeast) and tRNATyr (E. coli) proceeds in a one-step mechanism. Phenylalanyl-tRNA synthetase (yeast) binds either two molecules of tRNAPhe (yeast) or only one molecule of tRNATyr (E. coli); tRNA1Val (E. coli) or tRNASer (yeast) are also bound in a 1:1 stoichiometry. Binding constants for complexes of phenylalanyl-tRNA synthetase (yeast) and tRNATyr (E. coli) are determined under a variety of conditions. In contrast to specific complex formation, non-specific binding is disfavoured by the presence of Mg2+ ions, and is not affected by pH and the presence of pyrophosphate. The difference in the stabilities of specific and non-specific complexes can be varied by a factor of 2--100 depending on the ionic conditions. Discrimination of cognate and non-cognate tRNA by phenylalanyl-tRNA synthetase (yeast) is discussed in terms of the binding mechanism, the topology of the binding sites, the nature of interacting forces and the relation between specificity and ionic conditions.  相似文献   

7.
Guo LT  Chen XL  Zhao BT  Shi Y  Li W  Xue H  Jin YX 《Nucleic acids research》2007,35(17):5934-5943
For most aminoacyl-tRNA synthetases (aaRS), their cognate tRNA is not obligatory to catalyze amino acid activation, with the exception of four class I (aaRS): arginyl-tRNA synthetase, glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase and class I lysyl-tRNA synthetase. Furthermore, for arginyl-, glutamyl- and glutaminyl-tRNA synthetase, the integrated 3' end of the tRNA is necessary to activate the ATP-PPi exchange reaction. Tryptophanyl-tRNA synthetase is a class I aaRS that catalyzes tryptophan activation in the absence of its cognate tRNA. Here we describe mutations located at the appended beta1-beta2 hairpin and the AIDQ sequence of human tryptophanyl-tRNA synthetase that switch this enzyme to a tRNA-dependent mode in the tryptophan activation step. For some mutant enzymes, ATP-PPi exchange activity was completely lacking in the absence of tRNA(Trp), which could be partially rescued by adding tRNA(Trp), even if it had been oxidized by sodium periodate. Therefore, these mutant enzymes have strong similarity to arginyl-tRNA synthetase, glutaminyl-tRNA synthetase and glutamyl-tRNA synthetase in their mode of amino acid activation. The results suggest that an aaRS that does not normally require tRNA for amino acid activation can be switched to a tRNA-dependent mode.  相似文献   

8.
We describe the genetically engineered overproduction of Escherichia coli tRNA(2Gln), its purification by high pressure liquid chromatography (HPLC), and its subsequent use in the growth of crystals of the E. coli glutaminyl-tRNA synthetase-tRNA(Gln) complex. The overproduced tRNA represents 60 to 70% of the total tRNA extracted from the engineered strain. A single anion exchange HPLC column is then sufficient to increase the purity of this isoacceptor to 90 to 95%. Crystals of this material complexed with the monomeric E. coli glutaminyl-tRNA synthetase enzyme were obtained by vapor diffusion from solutions containing sodium citrate as the precipitating agent. The crystals diffract to beyond 2.8 A resolution (1 A = 0.1 nm) and are of the orthorhombic space group C222(1) with unit cell parameters a = 240.5 A, b = 93.9 A, c = 115.7 A. Gel electrophoresis of dissolved crystals demonstrates the presence of both protein and tRNA.  相似文献   

9.
The gene encoding the cysteinyl-tRNA synthetase of E. coli was cloned from an E. coli genomic library made in lambda 2761, a lambda vector which can integrate and which carries a chloramphenicol resistance gene. A thermosensitive cysS mutant of E. coli was lysogenised and chloramphenicol-resistant colonies able to grow at 42 degrees C were selected to isolate phages containing the wild-type cysS gene. The sequence of the gene was determined. It codes for a 461 amino-acid protein and includes the sequences HIGH and KMSK known to be involved in the ATP and tRNA binding respectively of class I synthetases. The cysteinyl enzyme has segments in common with the cytoplasmic leucyl-tRNA synthetase of Neurospora crassa, the tryptophanyl-tRNA synthetase of Bacillus stearothermophilus, and the phenylalanyl-tRNA synthetase of Saccharomyces cerevisiae. Sequence comparisons show that the amino end of the cysteinyl-tRNA synthetase has similarities with prokaryotic elongation factors Tu; this region is close to the equivalent acceptor binding domain of the glutaminyl-tRNA synthetase of E. coli. There is a further similarity with the seryl enzyme (a class II enzyme) which has led us to propose that both classes had a common origin and that this was the ancestor of the cysteinyl-tRNA synthetase.  相似文献   

10.
The crystal structure of ligand-free E. coli glutaminyl-tRNA synthetase (GlnRS) at 2.4 A resolution shows that substrate binding is essential to construction of a catalytically proficient active site. tRNA binding generates structural changes throughout the enzyme, repositioning key active site peptides that bind glutamine and ATP. The structure gives insight into longstanding questions regarding the tRNA dependence of glutaminyl adenylate formation, the coupling of amino acid and tRNA selectivities, and the roles of specific pathways for transmission of tRNA binding signals to the active site. Comparative analysis of the unliganded and tRNA-bound structures shows, in detail, how flexibility is built into the enzyme architecture and suggests that the induced-fit transitions are a key underlying determinant of both amino acid and tRNA specificity.  相似文献   

11.
Francin M  Mirande M 《Biochemistry》2006,45(33):10153-10160
Mammalian lysyl-tRNA synthetase (LysRS) has an N-terminal polypeptide chain extension appended to a prokaryotic-like synthetase domain. This extension, termed a tRNA-interacting factor (tIF), possesses a RNA-binding motif [KxxxK(K/R)xxK] that binds nonspecifically the acceptor TPsiC stem-loop domain of tRNA and provides a potent tRNA binding capacity to this enzyme. Consequently, native LysRS aminoacylates a RNA minihelix mimicking the amino acid acceptor stem-loop domain of tRNA(3)(Lys). Here, examination of minihelix recognition showed that mammalian LysRS aminoacylates RNA minihelices without specificity of sequence, revealing that none of the nucleotides from the acceptor TPsiC stem-loop domain are essential determinants of tRNA(Lys) acceptor identity. To test whether the tIF domain reduces the specificity of the synthetase with regard to complete tRNA molecules, aminoacylation of wild-type and mutant noncognate tRNAs by wild-type or N-terminally truncated LysRS was examined. The presence of the UUU anticodon of tRNA(Lys) appeared to be necessary and sufficient to transform yeast tRNA(Asp) or tRNA(i)(Met) into potent lysine acceptor tRNAs. Thus, nonspecific RNA-protein interactions between the acceptor stem of tRNA and the tIF domain do not relax the tRNA specificity of mammalian LysRS. The possibility that interaction of the full-length cognate tRNA with the synthetase is required to induce the catalytic center of the enzyme into a productive conformation is discussed.  相似文献   

12.
The seryl-tRNA synthetase from Saccharomyces cerevisiae interacts with the peroxisome biogenesis-related factor Pex21p. Several deletion mutants of seryl-tRNA synthetase were constructed and inspected for their ability to interact with Pex21p in a yeast two-hybrid assay, allowing mapping of the synthetase domain required for complex assembly. Deletion of the 13 C-terminal amino acids abolished Pex21p binding to seryl-tRNA synthetase. The catalytic parameters of purified truncated seryl-tRNA synthetase, determined in the serylation reaction, were found to be almost identical to those of the native enzyme. In vivo loss of interaction with Pex21p was confirmed in vitro by coaffinity purification. These data indicate that the C-terminally appended domain of yeast seryl-tRNA synthetase does not participate in substrate binding, but instead is required for association with Pex21p. We further determined that Pex21p does not directly bind tRNA, and nor does it possess a tRNA-binding motif, but it instead participates in the formation of a specific ternary complex with seryl-tRNA synthetase and tRNA(Ser), strengthening the interaction of seryl-tRNA synthetase with its cognate tRNA(Ser).  相似文献   

13.
In the presence or absence of its regulatory factor, the monomeric glutamyl-tRNA synthetase from Bacillus subtilis can aminoacylate in vitro with glutamate both tRNAGlu and tRNAGln from B. subtilis and tRNAGln1 but not tRNAGln2 or tRNAGlu from Escherichia coli. The Km and Vmax values of the enzyme for its substrates in these homologous or heterologous aminoacylation reactions are very similar. This enzyme is the only aminoacyl-tRNA synthetase reported to aminoacylate with normal kinetic parameters two tRNA species coding for different amino acids and to misacylate at a high rate a heterologous tRNA under normal aminoacylation conditions. The exceptional lack of specificity of this enzyme for its tRNAGlu and tRNAGln substrates, together with structural and catalytic peculiarities shared with the E. coli glutamyl- and glutaminyl-tRNA synthetases, suggests the existence of a close evolutionary linkage between the aminoacyl-tRNA synthetases specific for glutamate and those specific for glutamine. A comparison of the primary structures of the three tRNAs efficiently charged by the B. subtilis glutamyl-tRNA synthetase with those of E. coli tRNAGlu and tRNAGln2 suggests that this enzyme interacts with the G64-C50 or G64-U50 in the T psi stem of its tRNA substrates.  相似文献   

14.
Methionyl-tRNA synthetase (MetRS) is a multidomain protein that specifically binds tRNAMet and catalyzes the synthesis of methionyl-tRNAMet. The minimal, core enzyme found in Aquifex aeolicus is made of a catalytic domain, which catalyzes the aminoacylation reaction, and an anticodon-binding domain, which promotes tRNA-protein association. In eukaryotes, additional domains are appended in cis or in trans to the core enzyme and increase the stability of the tRNA-protein complexes. Eventually, as observed for MetRS from Homo sapiens, the C-terminal appended domain causes a slow release of aminoacyl-tRNA and establishes a limiting step in the global aminoacylation reaction. Here, we report that MetRS from the nematode Caenorhabditis elegans displays a new type of structural organization. Its very C-terminal appended domain is related to the oligonucleotide binding-fold-based tRNA-binding domain (tRBD) recovered at the C-terminus of MetRS from plant, but, in the nematode enzyme, this domain is separated from the core enzyme by an insertion domain. Gel retardation and tRNA aminoacylation experiments show that MetRS from nematode is functionally related to human MetRS despite the fact that their appended tRBDs have distinct structural folds, and are not orthologs. Thus, functional convergence of human and nematode MetRS is the result of parallel and convergent evolution that might have been triggered by the selective pressure to invent processivity of tRNA handling in translation in higher eukaryotes.  相似文献   

15.
aaRSs (aminoacyl-tRNA synthetases) are multi-domain proteins that have evolved by domain acquisition. The anti-codon binding domain was added to the more ancient catalytic domain during aaRS evolution. Unlike in eukaryotes, the anti-codon binding domains of GluRS (glutamyl-tRNA synthetase) and GlnRS (glutaminyl-tRNA synthetase) in bacteria are structurally distinct. This originates from the unique evolutionary history of GlnRSs. Starting from the catalytic domain, eukaryotic GluRS evolved by acquiring the archaea/eukaryote-specific anti-codon binding domain after branching away from the eubacteria family. Subsequently, eukaryotic GlnRS evolved from GluRS by gene duplication and horizontally transferred to bacteria. In order to study the properties of the putative ancestral GluRS in eukaryotes, formed immediately after acquiring the anti-codon binding domain, we have designed and constructed a chimaeric protein, cGluGlnRS, consisting of the catalytic domain, Ec GluRS (Escherichia coli GluRS), and the anti-codon binding domain of EcGlnRS (E. coli GlnRS). In contrast to the isolated EcN-GluRS, cGluGlnRS showed detectable activity of glutamylation of E. coli tRNA(glu) and was capable of complementing an E. coli ts (temperature-sensitive)-GluRS strain at non-permissive temperatures. Both cGluGlnRS and EcN-GluRS were found to bind E. coli tRNA(glu) with native EcGluRS-like affinity, suggesting that the anticodon-binding domain in cGluGlnRS enhances k(cat) for glutamylation. This was further confirmed from similar experiments with a chimaera between EcN-GluRS and the substrate-binding domain of EcDnaK (E. coli DnaK). We also show that an extended loop, present in the anticodon-binding domains of GlnRSs, is absent in archaeal GluRS, suggesting that the loop was a later addition, generating additional anti-codon discrimination capability in GlnRS as it evolved from GluRS in eukaryotes.  相似文献   

16.
Summary Aminoacyl-tRNA synthetases are important components of the genetic apparatus. In spite of common catalytic properties, synthetases with different amino acid specificities are widely diverse in their primary structures, subunit sizes, and subunit composition. However, synthetases with given amino acid specificities are well conserved throughout evolution. We have been studying the human glutaminyl-tRNA synthetase possessing a sequence of about 400 amino acid residues (the core region) that is very similar to sequences in the corresponding enzymes from bacteria and yeast. The conserved sequence appears to be essential for the basic function of the enzyme, the charging of tRNA with glutamine. As a first step to a better understanding of the evolution of this enzyme, we determined the coding region for the conserved part of the human glutaminyl-tRNA synthetase. The coding region is composed of eight exons. It appears that individual exons encode defined secondary structural elements as parts of functionally important domains of the enzyme. Evolution of the gene by assembly of individual exons seems to be a viable hypothesis; alternative pathways are discussed. Offprint requests to: R. Knippers  相似文献   

17.
E. coli tryptophanyl-tRNA synthetase can form a complex with Blue-dextran Sepharose, in the presence or in the absence of Mg++. In its absence, the complex is dissociated by either ATP or cognate tRNATrp. However, in the presence of Mg++, only tRNATrp can dissociate the complex whereas ATP has no effect. E. coli total tRNA or tRNAMet, at the same concentration, cannot displace the synthetase from the complex. It is suggested that the Blue-dextran binds to the synthetase through its tRNA binding domain. This hypothesis is supported by previous findings with polynucleotide phosphorylase showing that Blue-dextran Sepharose can be used in affinity chromatography to recognize a polynucleotide binding site of the protein. The selective elution by its cognate tRNA of Trp-tRNA synthetase bound to Blue-dextran Sepharose provides a rapid and efficient purification of the enzyme. Examples of other synthetases and nucleotidyl transferases are also discussed.  相似文献   

18.
Human glutaminyl-tRNA synthetase (QRS) is one of several mammalian aminoacyl-tRNA synthetases (ARSs) that form a macromolecular protein complex. To understand the mechanism of QRS targeting to the multi-ARS complex, we analyzed both exogenous and endogenous QRSs by immunoprecipitation after overexpression of various Myc-tagged QRS mutants in human embryonic kidney 293 cells. Whereas a deletion mutant containing only the catalytic domain (QRS-C) was targeted to the multi-ARS complex, a mutant QRS containing only the N-terminal appended domain (QRS-N) was not. Deletion mapping showed that the ATP-binding Rossman fold was necessary for targeting of QRS to the multi-ARS complex. Furthermore, exogenous Myc-tagged QRS-C was co-immunoprecipitated with endogenous QRS. Since glutaminylation of tRNA was dramatically increased in cells transfected with the full-length QRS, but not with either QRS-C or QRS-N, both the QRS catalytic domain and the N-terminal appended domain were required for full aminoacylation activity. When QRS-C was overexpressed, arginyl-tRNA synthetase and p43 were released from the multi-ARS complex along with endogenous QRS, suggesting that the N-terminal appendix of QRS is required to keep arginyl-tRNA synthetase and p43 within the complex. Thus, the eukaryote-specific N-terminal appendix of QRS appears to stabilize the association of other components in the multi-ARS complex, whereas the C-terminal catalytic domain is necessary for QRS association with the multi-ARS complex.  相似文献   

19.
The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNA(Leu). In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing.  相似文献   

20.
The human glutaminyl-tRNA synthetase is three times larger than the corresponding bacterial and twice as large as the yeast enzyme. It is possible that the additional sequences of the human glutaminyl-tRNA synthetase are required for the formation of the multienzyme complex which is known to include several of aminoacyl-tRNA synthetases in mammalian cells. To address this point we prepared antibodies against three regions of the human glutaminyl-tRNA synthetase, namely against its enzymatically important core region, and against two sections in its large C-terminal extension. In intact multienzyme complexes the core region was accessible to specific antibody binding. However, the C-terminal sections became available to specific antibody binding only when certain components of the multienzyme complex were either absent or degraded. These findings allow first conclusions as to the relative position of some components in the mammalian aminoacyl-tRNA synthetase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号