首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G protein-activated inwardly rectifying potassium channel (GIRK) plays crucial roles in regulating heart rate and neuronal excitability in eukaryotic cells. A variety of ligands, including heterotrimeric G protein βγ subunits (Gβγ), bind to the cytoplasmic regions of GIRK and modulate its activity. We established the backbone resonance assignments of 2H/13C/15N-labeled cytoplasmic regions of mouse GIRK1, which form a tetramer with a molecular weight of 96 K.  相似文献   

2.
Kv2.1 is a potassium channel α-subunit abundantly expressed throughout the brain. It is a main component of delayed rectifier current (I(K)) in several neuronal types and a regulator of excitability during high-frequency firing. Here we identify AMIGO (amphoterin-induced gene and ORF), a neuronal adhesion protein with leucine-rich repeat and immunoglobin domains, as an integral part of the Kv2.1 channel complex. AMIGO shows extensive spatial and temporal colocalization and association with Kv2.1 in the mouse brain. The colocalization of AMIGO and Kv2.1 is retained even during stimulus-induced changes in Kv2.1 localization. AMIGO increases Kv2.1 conductance in a voltage-dependent manner in HEK cells. Accordingly, inhibition of endogenous AMIGO suppresses neuronal I(K) at negative membrane voltages. In conclusion, our data indicate AMIGO as a function-modulating auxiliary subunit for Kv2.1 and thus provide new insights into regulation of neuronal excitability.  相似文献   

3.
目的:研究脂肪胺类的新型钾通道开放剂(KCO)埃他卡林(Ipt)和氰胍类的KCO吡那地尔(Pin)对大鼠心血管ATP-敏感性钾通道(KATP)的亚基SUR1、SUR2、Kir6.1和Kir6.2等在mRNA水平的调节作用。方法:SD大鼠给药1周后处死并取组织,提取总RNA,利用反转录-聚合酶链式反应(RT-PCR)研究以上基因在mRNA水平的改变。结果:与正常对照相比,心脏组织中,Ipt和Pin对KATP的4个亚基在mRNA水平均无显著影响;主动脉平滑肌上,Ipt对4个亚基的mRNA表达无显著影响,但Pin可显著上调SUR2的mRNA表达;尾动脉平滑肌上,Ipt对Kit6.1/Kit6.2、Pin对SUR2/Kir6.1均有显著下调的作用。结论:心肌、大动脉平滑肌和小动脉平滑肌KATP基因表达的调控不同,Ipt选择性调节小动脉平滑肌Kit6.1/Kit6.2;Ipt对心血管KATP基因表达的调节作用不同于Pin。  相似文献   

4.
Glia in the central nervous system (CNS) express diverse inward rectifying potassium channels (Kir). The major function of Kir is in establishing the high potassium (K+) selectivity of the glial cell membrane and strongly negative resting membrane potential (RMP), which are characteristic physiological properties of glia. The classical property of Kir is that K+ flows inwards when the RMP is negative to the equilibrium potential for K+ (E(K)), but at more positive potentials outward currents are inhibited. This provides the driving force for glial uptake of K+ released during neuronal activity, by the processes of "K+ spatial buffering" and "K+ siphoning", considered a key function of astrocytes, the main glial cell type in the CNS. Glia express multiple Kir channel subtypes, which are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors, including pH, ATP, G-proteins, neurotransmitters and hormones. A feature of CNS glia is their specific expression of the Kir4.1 subtype, which is a major K+ conductance in glial cell membranes and has a key role in setting the glial RMP. It is proposed that Kir4.1 have a primary function in K+ regulation, both as homomeric channels and as heteromeric channels by co-assembly with Kir5.1 and probably Kir2.0 subtypes. Significantly, Kir4.1 are also expressed by oligodendrocytes, the myelin-forming cells of the CNS, and the genetic ablation of Kir4.1 results in severe hypomyelination. Hence, Kir, and in particular Kir4.1, are key regulators of glial functions, which in turn determine neuronal excitability and axonal conduction.  相似文献   

5.
RNA editing at four sites in eag, a Drosophila voltage-gated potassium channel, results in the substitution of amino acids into the final protein product that are not encoded by the genome. These sites and the editing alterations introduced are K467R (Site 1, top of the S6 segment), Y548C, N567D and K699R (sites 2–4, within the cytoplasmic C-terminal domain). We mutated these residues individually and expressed the channels in Xenopus oocytes. A fully edited construct (all four sites) has the slowest activation kinetics and a paucity of inactivation, whereas the fully unedited channel exhibits the fastest activation and most dramatic inactivation. Editing Site 1 inhibits steady-state inactivation. Mutating Site 1 to the neutral residues resulted in intermediate inactivation phenotypes and a leftward shift of the peak current-voltage relationship. Activation kinetics display a Cole-Moore shift that is enhanced by RNA editing. Normalized open probability relationships for 467Q, 467R and 467K are superimposable, indicating little effect of the mutations on steady-state activation. 467Q and 467R enhance instantaneous inward rectification, indicating a role of this residue in ion permeation. Intracellular tetrabutylammonium blocks 467K significantly better than 467R. Block by intracellular, but not extracellular, tetraethylammonium interferes with inactivation. The fraction of inactivated current is reduced at higher extracellular Mg+2 concentrations, and channels edited at Site 1 are more sensitive to changes in extracellular Mg+2 than unedited channels. These results show that even a minor change in amino acid side-chain chemistry and size can have a dramatic impact on channel biophysics, and that RNA editing is important for fine-tuning the channel’s function.  相似文献   

6.
Summary Measurements were made of the kinetic and steady-state characteristics of the potassium conductance in the giant axon of the crabsCarcinus maenas andCancer pagirus. The conductance increase during depolarizing voltage-clamp pulses was analyzed assuming that two separate types of potassium channels exist in these axons (M. E. Quinta-Ferreira, E. Rojas and N. Arispe,J. Membrane Biol. 66:171–181, 1982). It is shown here that, with small concentrations of conventional K+-channel blockers, it is possible to differentially inhibit these channels. The potassium channels with activation and fast inactivation gating (m3h, Hodgkin-Huxley kinetics) were blocked by external application of 4 amino-pyridine (4-AP). The potassium channels with standard gating (n4, Hodgkin-Huxley kinetics) were preferentially inhibited by externally applied tetraethylammonium (TEA). The differential blockage of the two types of potassium conductance changes suggests that they represent two different populations of potassium channels.It is further shown here that blocking the early transient conductance increase leads to the inhibition of the repetitive electrical activity induced by constant depolarizing current injection in fibers fromCardisoma guanhumi.  相似文献   

7.
In cerebellum, 75% of all GABAA receptors contain alpha1 subunits. Here, we investigated compensatory changes in GABAA receptor subunit expression and composition in alpha1 subunit-knockout mice. In these mice the total number of cerebellar GABAA receptors was reduced by 46%. Whereas the number of receptors containing alpha6 subunits was unchanged, the total amount of alpha6 subunits was significantly elevated. RT-PCR showed no increase of alpha6 mRNA levels, arguing against increased biosynthesis of these subunits. Elevated levels of alpha6 subunits in alpha1 -/- mice might thus have been caused by an increased incorporation of unassembled alpha6 subunits, replacing alpha1 subunits in alpha1alpha6betagamma2 or alpha1alpha6betadelta receptors, thus rescuing alpha6 subunits from degradation. Elevated levels of alpha3 and alpha4 subunits in the cerebellum of alpha1 -/- mice possibly can be explained similarly. Finally, a small amount of receptors containing no gamma or delta subunits was identified in these mice. Results suggest a total loss of GABAA receptors in cell types where alpha1 was the only alpha subunit expressed and a partial compensation for receptor loss in cell types containing other alpha subunits. Our results do not support a significant compensatory synthesis of other GABAA receptor subunits in the cerebellum of alpha1 -/- mice.  相似文献   

8.
Activation of G protein-gated inwardly-rectifying K+ (GIRK or Kir3) channels by metabotropic gamma-aminobutyric acid (B) (GABAB) receptors is an essential signalling pathway controlling neuronal excitability and synaptic transmission in the brain. To investigate the relationship between GIRK channel subunits and GABAB receptors in cerebellar Purkinje cells at post- and pre-synaptic sites, we used biochemical, functional and immunohistochemical techniques. Co-immunoprecipitation analysis demonstrated that GIRK subunits are co-assembled with GABAB receptors in the cerebellum. Immunoelectron microscopy showed that the subunit composition of GIRK channels in Purkinje cell spines is compartment-dependent. Thus, at extrasynaptic sites GIRK channels are formed by GIRK1/GIRK2/GIRK3, post-synaptic densities contain GIRK2/GIRK3 and dendritic shafts contain GIRK1/GIRK3. The post-synaptic association of GIRK subunits with GABAB receptors in Purkinje cells is supported by the subcellular regulation of the ion channel and the receptor in mutant mice. At pre-synaptic sites, GIRK channels localized to parallel fibre terminals are formed by GIRK1/GIRK2/GIRK3 and co-localize with GABAB receptors. Consistent with this morphological evidence we demonstrate their functional interaction at axon terminals in the cerebellum by showing that GIRK channels play a role in the inhibition of glutamate release by GABAB receptors. The association of GIRK channels and GABAB receptors with excitatory synapses at both post- and pre-synaptic sites indicates their intimate involvement in the modulation of glutamatergic neurotransmission in the cerebellum.  相似文献   

9.
Mora SI  Escobar LI 《FEBS letters》2005,579(14):3019-3023
The G protein-coupled inwardly rectifying GIRK5 and Delta5GIRK5 splicing variants do not express functional potassium channels. In contrast, Delta25GIRK5 forms functional homomultimers in Xenopus laevis oocytes. A tyrosine is present at the N-term of the non-functional isoforms. We studied the effect of endogenous tyrosine phosphorylation on the GIRK5 surface and functional expression. Unlike wild type channels, GIRK5Y16A and Delta5GIRK5Y16A mutants displayed inwardly rectifying currents and inhibitors of Src tyrosine kinase promoted the traffiking of GIRK5 to the cell surface. This is the first evidence that endogenous phosphorylation of a tyrosine residue in a GIRK channel inhibits its surface expression.  相似文献   

10.
Amongst the nine voltage-gated K+ channel (Kv) subunits expressed in Arabidopsis, AtKC1 does not seem to form functional Kv channels on its own, and is therefore said to be silent. It has been proposed to be a regulatory subunit, and to significantly influence the functional properties of heteromeric channels in which it participates, along with other Kv channel subunits. The mechanisms underlying these properties of AtKC1 remain unknown. Here, the transient (co-)expression of AtKC1 , AKT1 and/or KAT1 genes was obtained in tobacco mesophyll protoplasts, which lack endogenous inward Kv channel activity. Our experimental conditions allowed both localization of expressed polypeptides (GFP-tagging) and recording of heterologously expressed Kv channel activity (untagged polypeptides). It is shown that AtKC1 remains in the endoplasmic reticulum unless it is co-expressed with AKT1. In these conditions heteromeric AtKC1-AKT1 channels are obtained, and display functional properties different from those of homomeric AKT1 channels in the same context. In particular, the activation threshold voltage of the former channels is more negative than that of the latter ones. Also, it is proposed that AtKC1-AKT1 heterodimers are preferred to AKT1-AKT1 homodimers during the process of tetramer assembly. Similar results are obtained upon co-expression of AtKC1 with KAT1 . The whole set of data provides evidence that AtKC1 is a conditionally-targeted Kv subunit, which probably downregulates the physiological activity of other Kv channel subunits in Arabidopsis.  相似文献   

11.
In our previous work,we developed a computational tool,PreK-ClassK-ClassKv,to predictand classify potassium (K~ ) channels.For K channel prediction (PreK) and classification at family level(ClassK),this method performs well.However,it does not perform so well in classifying voltage-gatedpotassium (Kv) channels (ClassKv).In this paper,a new method based on the local sequence information ofKv channels is introduced to classify Kv channels.Six transmembrane domains of a Kv channel protein areused to define a protein,and the dipeptide composition technique is used to transform an amino acid sequenceto a numerical sequence.A Kv channel protein is represented by a vector with 2000 elements,and a supportvector machine algorithm is applied to classify Kv channels.This method shows good performance withaverages of total accuracy (Acc),sensitivity (SE),specificity (SP),reliability (R) and Matthews correlationcoefficient (MCC) of 98.0%,89.9%,100%,0.95 and 0.94 respectively.The results indicate that the localsequence information-based method is better than the global sequence information-based method to classifyKv channels.  相似文献   

12.
Yu Cheng 《FEBS letters》2010,584(10):2005-2012
Three types of potassium channels cooperate with the permeability transition pore (PTP) in the inner mitochondrial membranes of various tissues, mtK(ATP), mtBK, and mtKv1.3. While the latter two share similarities with their plasma membrane counterparts, mtK(ATP) exhibits considerable differences with the plasma membrane K(ATP)-channel. One important function seems to be suppression of release of proapototic substances from mitochondria through the PTP. Open potassium channels tend to keep the PTP closed thus acting as antiapoptotic. Nevertheless, in their mode of action there are considerable differences among them. This review introduces three K+-channels and the PTP, and discusses known facts about their interaction.  相似文献   

13.
AtKAT1 plays roles as a major channel to uptake K+ in guard cell when stomata open in dicot model plant Arabidopsis. In a recent publication, we isolated 3 KAT-like potassium channels in rice. We expressed them in CHO cell to identify electrophysiological characteristics of the channels. OsKAT2 showed much bigger inwardly rectifying potassium channel activities among them. The histochemical X-glu staining of transgenic rice leaf blades expressing β-glucuronidase fused with OsKAT2 promoter showed that the OsKAT2 is dominantly expressed in rice guard cell. These findings indicate that OsKAT2 may be a functional ortholog of AtKAT1 in rice. Thus this gene will be the prime target for engineering the guard cell movement to improve drought tolerance in monocot plants, including most major crops.  相似文献   

14.
Native and recombinant G protein-gated inwardly rectifying potassium (GIRK) channels are directly activated by the betagamma subunits of GTP-binding (G) proteins. The presence of phosphatidylinositol-bis-phosphate (PIP(2)) is required for G protein activation. Formation (via hydrolysis of ATP) of endogenous PIP(2) or application of exogenous PIP(2) increases the mean open time of GIRK channels and sensitizes them to gating by internal Na(+) ions. In the present study, we show that the activity of ATP- or PIP(2)-modified channels could also be stimulated by intracellular Mg(2+) ions. In addition, Mg(2+) ions reduced the single-channel conductance of GIRK channels, independently of their gating ability. Both Na(+) and Mg(2+) ions exert their gating effects independently of each other or of the activation by the G(betagamma) subunits. At high levels of PIP(2), synergistic interactions among Na(+), Mg(2+), and G(betagamma) subunits resulted in severalfold stimulated levels of channel activity. Changes in ionic concentrations and/or G protein subunits in the local environment of these K(+) channels could provide a rapid amplification mechanism for generation of graded activity, thereby adjusting the level of excitability of the cells.  相似文献   

15.
The present study describes the discovery and characterization of a series of 5-aryl-2H-tetrazol-3-ylacetamides as G protein-gated inwardly-rectifying potassium (GIRK) channels activators. Working from an initial hit discovered during a high-throughput screening campaign, we identified a tetrazole scaffold that shifts away from the previously reported urea-based scaffolds while remaining effective GIRK1/2 channel activators. In addition, we evaluated the compounds in Tier 1 DMPK assays and have identified a (3-methyl-1H-pyrazol-1-yl)tetrahydrothiophene-1,1-dioxide head group that imparts interesting and unexpected microsomal stability compared to previously-reported pyrazole head groups.  相似文献   

16.
To develop a malleable system to model the well-described, physiological interactions between Gq/11 - coupled receptor and Gi/o-coupled receptor signaling, we coexpressed the endothelin A receptor, the mu-opioid receptor, and the G protein-coupled inwardly rectifying potassium channel (Kir 3) heteromultimers in Xenopus laevis oocytes. Activation of the Gi/o-coupled mu-opioid receptor strongly increased Kir 3 channel current, whereas activation of the Gq/11-coupled endothelin A receptor inhibited the Kir 3 response evoked by mu-opioid receptor activation. The magnitude of the inhibition of Kir 3 was channel subtype specific; heteromultimers composed of Kir 3.1 and Kir 3.2 or Kir 3.1 and Kir 3.4 were significantly more sensitive to the effects of endothelin-1 than heteromultimers composed of Kir 3.1 and Kir 3.5. The difference in sensitivity of the heteromultimers suggests that the endothelin-induced inhibition of the opioid- activated current was caused by an effect at the channel rather than at the opioid receptor. The endothelin-1-mediated inhibition was mimicked by arachidonic acid and blocked by the phospholipase A2 inhibitor arachidonoyl trifluoromethyl ketone. Consistent with a possible phospholipase A2-mediated mechanism, the endothelin-1 effect was blocked by calcium chelation with BAPTA-AM and was not affected by kinase inhibition by either staurosporine or genistein. The data suggest the hypothesis that Gq/11-coupled receptor activation may interfere with Gi/o-coupled receptor signaling by the activation of phospholipase A2 and subsequent inhibition of effector function by a direct effect of an eicosanoid on the channel.  相似文献   

17.
Mitochondrial potassium channels play an important role in cytoprotection. Potassium channels in the inner mitochondrial membrane are modulated by inhibitors and activators (potassium channel openers) previously described for plasma membrane potassium channels. The majority of mitochondrial potassium channel modulators exhibit a broad spectrum of off-target effects. These include uncoupling properties, inhibition of the respiratory chain and effects on cellular calcium homeostasis. Therefore, the rational application of channel inhibitors or activators is crucial to understanding the cellular consequences of mitochondrial channel inhibition or activation. Moreover, understanding their side-effects should facilitate the design of a specific mitochondrial channel opener with cytoprotective properties. In this review, we discuss the complex interactions of potassium channel inhibitors and activators with cellular structures.  相似文献   

18.
Summary The K conductance (g K) kinetics were studied in voltage-clamped frog nodes (Rana ridibunda) in double-pulse experiments. The Cole-Moore translation forg Kt curves associated with different initial potentials (E) was only observed with a small percentage of fibers. The absence of the translation was found to be caused by the involvement of an additional, slow,g K component. This component cannot be attributed to a multiple-state performance of the K channel. It can only be accounted for by a separate, slow K channel, the fast channel being the same as then 4 K channel inR. pipiens.The slow K channel is characterized by weaker sensitivity to TEA, smaller density, weaker potential (E) dependence, and somewhat more negativeE range of activation than the fast K channel. According to characteristics of the slow K system, three types of fibers were found. In Type I fibers (most numerous) the slow K channel behaves as ann 4 HH channel. In Type II fibers (the second largest group found) the slow K channel obeys the HH kinetics within a certainE range only; beyond this range the exponential decline of the slowg K component is preceded by anE-dependent delay, its kinetics after the delay being the same as those in Type I fibers. In Type III fibers (rare) the slow K channel is lacking, and it is only in these fibers that the Cole-Moore translation of the measuredg Kt curves can be observed directly.The physiological role of the fast and slow K channel in amphibian nerves is briefly discussed.  相似文献   

19.
HEK293 cells were transfected with cDNAs for Gbeta1(W332A) [a mutant Gbeta1], Ggamma2, and inward rectifier K+ channels (Kir3.1/Kir3.2). Application of Gbeta1gamma2 protein to these cells activated the K+ channels only slightly. When mu-opioid receptors and Kir3.1/Kir3.2 were transfected, application of a mu-opioid agonist induced a Kir3 current. However, co-expression of Gbeta1(W332A) suppressed this current. Most likely, Gbeta1(W332A) inhibited the action of the endogenous Gbeta. Such a dominant negative effect of Gbeta1(W332A) was also observed in neuronal Kir3 channels in locus coeruleus. The mutant, Gbeta1(W332A) protein, although inactive, retains its ability to bind Kir3 and prevents the wild type Gbeta from activating the channel.  相似文献   

20.
Large-conductance Ca(2+)-activated K(+) channels can be activated by membrane voltage in the absence of Ca(2+) binding, indicating that these channels contain an intrinsic voltage sensor. The properties of this voltage sensor and its relationship to channel activation were examined by studying gating charge movement from mSlo Ca(2+)-activated K(+) channels in the virtual absence of Ca(2+) (<1 nM). Charge movement was measured in response to voltage steps or sinusoidal voltage commands. The charge-voltage relationship (Q-V) is shallower and shifted to more negative voltages than the voltage-dependent open probability (G-V). Both ON and OFF gating currents evoked by brief (0.5-ms) voltage pulses appear to decay rapidly (tau(ON) = 60 microseconds at +200 mV, tau(OFF) = 16 microseconds at -80 mV). However, Q(OFF) increases slowly with pulse duration, indicating that a large fraction of ON charge develops with a time course comparable to that of I(K) activation. The slow onset of this gating charge prevents its detection as a component of I(gON), although it represents approximately 40% of the total charge moved at +140 mV. The decay of I(gOFF) is slowed after depolarizations that open mSlo channels. Yet, the majority of open channel charge relaxation is too rapid to be limited by channel closing. These results can be understood in terms of the allosteric voltage-gating scheme developed in the preceding paper (Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). The model contains five open (O) and five closed (C) states arranged in parallel, and the kinetic and steady-state properties of mSlo gating currents exhibit multiple components associated with C-C, O-O, and C-O transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号