首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tight junctions control paracellular permeability and cellpolarity. Rho GTPase regulates tight junction assembly, and ATP depletion of Madin-Darby canine kidney (MDCK) cells (an in vitro modelof renal ischemia) disrupts tight junctions. The relationship between Rho GTPase signaling and ATP depletion was examined. Rho inhibition resulted in decreased localization of zonula occludens-1 (ZO-1) and occludin at cell junctions; conversely, constitutive Rhosignaling caused an accumulation of ZO-1 and occludin at cell junctions. Inhibiting Rho before ATP depletion resulted in more extensive loss of junctional components between transfected cells thancontrol junctions, whereas cells expressing activated Rho bettermaintained junctions during ATP depletion than control cells. ATPdepletion and Rho signaling altered phosphorylation signalingmechanisms. ZO-1 and occludin exhibited rapid decreases in phosphoaminoacid content following ATP depletion, which was restored on recovery.Expression of Rho mutant proteins in MDCK cells also altered levels ofoccludin serine/threonine phosphorylation, indicating that occludin isa target for Rho signaling. We conclude that Rho GTPase signalinginduces posttranslational effects on tight junction components. Ourdata also demonstrate that activating Rho signaling protects tightjunctions from damage during ATP depletion.

  相似文献   

2.
Cadherin engagement regulates Rho family GTPases.   总被引:1,自引:0,他引:1  
The formation of cell-cell adherens junctions is a cadherin-mediated process associated with reorganization of the actin cytoskeleton. Because Rho family GTPases regulate actin dynamics, we investigated whether cadherin-mediated adhesion regulates the activity of RhoA, Rac1, and Cdc42. Confluent epithelial cells were found to have elevated Rac1 and Cdc42 activity but decreased RhoA activity when compared with low density cultures. Using a calcium switch method to manipulate junction assembly, we found that induction of cell-cell junctions increased Rac1 activity, and this was inhibited by E-cadherin function-blocking antibodies. Using the same calcium switch procedure, we found little effect on RhoA activity during the first hour of junction assembly. However, over several hours, RhoA activity significantly decreased. To determine whether these effects are mediated directly through cadherins or indirectly through engagement of other surface proteins downstream from junction assembly, we used a model system in which cadherin engagement is induced without cell-cell contact. For these experiments, Chinese hamster ovary cells expressing C-cadherin were plated on the extracellular domain of C-cadherin immobilized on tissue culture plates. Whereas direct cadherin engagement did not stimulate Cdc42 activity, it strongly inhibited RhoA activity but increased Rac1 activity. Deletion of the C-cadherin cytoplasmic domain abolished these effects.  相似文献   

3.
The regulation of Rho-family GTPases is crucial to direct the formation of cell–cell junctions and tissue barriers. Cingulin (CGN) and paracingulin (CGNL1) control RhoA activation in epithelial cells by interacting with RhoA guanidine exchange factors. CGNL1 depletion also inhibits Rac1 activation during junction assembly. Here we show that, unexpectedly, Madin–Darby canine kidney epithelial cells depleted of both CGN and CGNL1 (double-KD cells) display normal Rac1 activation and tight junction (TJ) formation, despite decreased junctional recruitment of the Rac1 activator Tiam1. The expression of the Rac1 inhibitor MgcRacGAP is decreased in double-KD cells, and the barrier development and Rac1 activation phenotypes are rescued by exogenous expression of MgcRacGAP. MgcRacGAP colocalizes with CGN and CGNL1 at TJs and forms a complex and interacts directly in vitro with CGN and CGNL1. Depletion of either CGN or CGNL1 in epithelial cells results in decreased junctional localization of MgcRacGAP but not of ECT2, a centralspindlin-interacting Rho GEF. These results provide new insight into coordination of Rho-family GTPase activities at junctions, since apical accumulation of CGN and CGNL1 at TJs during junction maturation provides a mechanism to spatially restrict down-regulation of Rac1 activation through the recruitment of MgcRacGAP.  相似文献   

4.
Hypoxia/reoxygenation-induced changes in endothelial permeability are accompanied by endothelial actin cytoskeletal and adherens junction remodeling, but the mechanisms involved are uncertain. We therefore measured the activities of the Rho GTPases Rac1, RhoA, and Cdc42 during hypoxia/reoxygenation and correlated them with changes in endothelial permeability, remodeling of the actin cytoskeleton and adherens junctions, and production of ROS. Dominant negative forms of Rho GTPases were introduced into cells by adenoviral gene transfer and transfection, and inhibitors of NADPH oxidase, PI3 kinase, and Rho kinase were used to characterize the signaling pathways involved. In some experiments constitutively activated forms of RhoA and Rac1 were also used. We show for the first time that hypoxia/reoxygenation-induced changes in endothelial permeability result from coordinated actions of the Rho GTPases Rac1 and RhoA. Rac1 and RhoA rapidly respond to changes in oxygen tension, and their activity depends on NADPH oxidase- and PI3 kinase-dependent production of ROS. Rac1 acts upstream of RhoA, and its transient inhibition by acute hypoxia leads to activation of RhoA followed by stress fiber formation, dispersion of adherens junctions, and increased endothelial permeability. Reoxygenation strongly activates Rac1 and restores cortical localization of F-actin and VE-cadherin. This effect is a result of Rac1-mediated inhibition of RhoA and can be prevented by activators of RhoA, L63RhoA, and lysophosphatidic acid. Cdc42 activation follows the RhoA pattern of activation but has no effect on actin remodeling, junctional integrity, or endothelial permeability. Our results show that Rho GTPases act as mediators coupling cellular redox state to endothelial function.  相似文献   

5.
Renal ischemia and in vitro ATP depletion result in disruption of the epithelial tight junction barrier, which is accompanied by breakdown of plasma membrane polarity. Tight junction formation is regulated by evolutionarily conserved complexes, including that of atypical protein kinase C (aPKC), Par3, and Par6. The aPKC signaling complex is activated by Rac and regulated by protein phosphorylation and associations with other tight junction regulatory proteins, for example, mLgl. In this study, we examined the role of aPKC signaling complex during ATP depletion and recovery in Madin-Darby canine kidney cells. ATP depletion reduced Rac GTPase activity and induced Par3, aPKC, and mLgl-1 redistribution from sites of cell-cell contact, which was restored following recovery from ATP depletion. Zonula occludens (ZO)-1 and Par3 phosphorylation was reduced and association of aPKC with its substrates Par3 and mLgl-1 was stabilized in ATP-depleted Madin-Darby canine kidney cells. ATP depletion also induced a stable association of Par3 with Tiam-1, a Rac GTPase exchange factor, which explains how aPKC and Rac activities were suppressed. Experimental inhibition of aPKC during recovery from ATP depletion interfered with reassembly of ZO-1 and Par3 at cell junctions. These data indicate that aPKC signaling is impaired during ATP depletion, participates in tight junction disassembly during cell injury and is important for tight junction reassembly during recovery. ischemia; atypical PKC; Par3; zonula occludens-1; mLgl-1  相似文献   

6.
7.
Adherens junctions play pivotal roles in cell and tissue organization and patterning by mediating cell adhesion and cell signaling. These junctions consist of large multiprotein complexes that join the actin cytoskeleton to the plasma membrane to form adhesive contacts between cells or between cells and extracellular matrix. The best-known adherens junction is the zonula adherens (ZA) that forms a belt surrounding the apical pole of epithelial cells. Recent studies in Drosophila have further illuminated the structure of adherens junctions. Scaffolding proteins encoded by the stardust gene are novel components of the Crumbs complex, which plays a critical role in ZA assembly.1-3 The small GTPase Rap1 controls the symmetric re-assembly of the ZA after cell division.4 Finally, the asymmetric distribution of adherens junction material regulates spindle orientation during asymmetric cell division in the sensory organ lineage.  相似文献   

8.
Epithelial intercellular junctions regulate cell-cell contact and mucosal barrier function. Both tight junctions (TJs) and adherens junctions (AJs) are regulated in part by their affiliation with the F-actin cytoskeleton. The cytoskeleton in turn is influenced by Rho family small GTPases such as RhoA, Rac1, and Cdc42, all of which constitute eukaryotic targets for several pathogenic organisms. With a tetracycline-repressible system to achieve regulated expression in Madin-Darby canine kidney (MDCK) epithelial cells, we used dominant-negative (DN) and constitutively active (CA) forms of RhoA, Rac1, and Cdc42 as tools to evaluate the precise contribution of each GTPase to epithelial structure and barrier function. All mutant GTPases induced time-dependent disruptions in epithelial gate function and distinct morphological alterations in apical and basal F-actin pools. TJ proteins occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule (JAM)-1 were dramatically redistributed in the presence of CA RhoA or CA Cdc42, whereas only claudins-1 and -2 were redistributed in response to CA Rac1. DN Rac1 expression also induced selective redistribution of claudins-1 and -2 in addition to JAM-1, whereas DN Cdc42 influenced only claudin-2 and DN RhoA had no effect. AJ protein localization was unaffected by any mutant GTPase, but DN Rac1 induced a reduction in E-cadherin detergent solubility. All CA GTPases increased the detergent solubility of claudins-1 and -2, but CA RhoA alone reduced claudin-2 and ZO-1 partitioning to detergent-insoluble membrane rafts. We conclude that Rho family GTPases regulate epithelial intercellular junctions via distinct morphological and biochemical mechanisms and that perturbations in barrier function reflect any imbalance in active/resting GTPase levels rather than simply loss or gain of GTPase activity. epithelium; tight junctions; paracellular permeability; Madin-Darby canine kidney cells  相似文献   

9.
Localized activation of Rho GTPases is essential for multiple cellular functions, including cytokinesis and formation and maintenance of cell–cell junctions. Although MgcRacGAP (Mgc) is required for spatially confined RhoA-GTP at the equatorial cortex of dividing cells, both the target specificity of Mgc''s GAP activity and the involvement of phosphorylation of Mgc at Ser-386 are controversial. In addition, Mgc''s function at cell–cell junctions remains unclear. Here, using gastrula-stage Xenopus laevis embryos as a model system, we examine Mgc''s role in regulating localized RhoA-GTP and Rac1-GTP in the intact vertebrate epithelium. We show that Mgc''s GAP activity spatially restricts accumulation of both RhoA-GTP and Rac1-GTP in epithelial cells—RhoA at the cleavage furrow and RhoA and Rac1 at cell–cell junctions. Phosphorylation at Ser-386 does not switch the specificity of Mgc''s GAP activity and is not required for successful cytokinesis. Furthermore, Mgc regulates adherens junction but not tight junction structure, and the ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Together these results indicate that Mgc''s GAP activity down-regulates the active populations of RhoA and Rac1 at localized regions of epithelial cells and is necessary for successful cytokinesis and cell–cell junction structure.  相似文献   

10.
R-cadherin is a member of the classical cadherins. Though much is known about E-cadherin in adherens junction formation in epithelial cells, the role of R-cadherin in epithelial cells remains elusive. This study examines regulation of R-cadherin adherens junctions by the small GTPase Rho and its downstream effectors in MDA-MB-231 breast cancer cells, MDA-MB-231 cells stably expressing the N-terminus of c-Cbl, and MCF10A normal breast epithelial cells. We find that the small GTPase Rho regulates R-cadherin adherens junction formation via Dia1 (also known as p140mDia) and profilin-1-mediated signaling pathway. The role played by Rho in regulating R-cadherin is underscored by the fact that constitutively active RhoA(Q63L) induces R-cadherin junction formation in MDA-MB-231 cells. Importantly, R-cadherin adherens junction formation facilitates a mesenchymal to epithelial-like transition in MDA-MB-231 cells. Additionally, our data suggest an inverse relationship between EGFR signaling and R-cadherin adherens junction formation. Taken together, results from this study indicate that R-cadherin is a critical regulator of epithelial phenotype.  相似文献   

11.
Cell-cell junctions are an integral part of epithelia and are often disrupted in cancer cells during epithelial-to-mesenchymal transition (EMT), which is a main driver of metastatic spread. We show here that Metastasis suppressor-1 (Mtss1; Missing in Metastasis, MIM), a member of the IMD-family of proteins, inhibits cell-cell junction disassembly in wound healing or HGF-induced scatter assays by enhancing cell-cell junction strength. Mtss1 not only makes cells more resistant to cell-cell junction disassembly, but also accelerates the kinetics of adherens junction assembly. Mtss1 drives enhanced junction formation specifically by elevating Rac-GTP. Lastly, we show that Mtss1 depletion reduces recruitment of F-actin at cell-cell junctions. We thus propose that Mtss1 promotes Rac1 activation and actin recruitment driving junction maintenance. We suggest that the observed loss of Mtss1 in cancers may compromise junction stability and thus promote EMT and metastasis.  相似文献   

12.
Glucocorticoid hormones stimulate adherens and tight junction formation in Con8 mammary epithelial tumor cells through a multistep process in which the membrane organization of structural apical junction proteins and tight junction sealing is controlled by specific signal transduction components. We have previously shown that dexamethasone stimulation of apical junction formation requires down-regulation of the small GTPase RhoA. Here we identified Rnd3/RhoE, a GTPase-deficient Rho family member and RhoA antagonist, as a key regulator of apical junction dynamics. Exogenously expressed Rnd3/RhoE co-localized with actin at the cell periphery and induced the localization of the adherens junction protein beta-catenin and the tight junction protein ZO-1 to sites of cell-cell contact, and led to the formation of highly sealed tight junctions. Treatment with glucocorticoids was not required to achieve complete apical junction remodeling. Consistent with Rnd3/RhoE acting as an antagonist of RhoA, expression of Rnd3/RhoE rescued the disruptive effects of constitutively active RhoA on apical junction organization. Our results demonstrate a new role for the Rho family member Rnd3/RhoE in regulating the assembly of the apical junction complex and tight junction sealing.  相似文献   

13.
Rho GTPases are critical for actin cytoskeletal regulation, and alterations in their activity may contribute to altered cytoskeletal organization that characterizes many pathological conditions, including ischemia. G protein activity is a function of the ratio of GTP-bound (active) to GDP-bound (inactive) protein, but the effect of altered energy metabolism on Rho protein activity has not been determined. We used antimycin A and substrate depletion to induce depletion of intracellular ATP and GTP in the kidney proximal tubule cell line LLC-PK10 and measured the activity of RhoA, Rac1, and Cdc42 with GTPase effector binding domains fused to glutathione S-transferase. RhoA activity decreased in parallel with the concentration of ATP and GTP during depletion, so that by 60 min there was no detectable RhoA-GTP, and recovered rapidly when cells were returned to normal culture conditions. Dissociation of the membrane-actin linker ezrin, a target of RhoA signaling, from the cytoskeletal fraction paralleled the decrease in RhoA activity and was augmented by treatment with the Rho kinase inhibitor Y27632. The activity of Cdc42 did not decrease significantly during depletion or recovery. Rac1 activity decreased moderately to a minimum at 30 min of depletion but then increased from 30 to 90 min of depletion, even as ATP and GTP levels continued to fall. Our data are consistent with a principal role for RhoA in cytoskeletal reorganization during ischemia and demonstrate that the activity of Rho GTPases can be maintained even at low GTP concentrations. Rac; Cdc42; actin; ezrin; adenosine 5'-triphosphate; guanosine 5'-triphosphate  相似文献   

14.
Several signaling pathways that regulate tight junction and adherens junction assembly are being characterized. Calpeptin activates stress fiber assembly in fibroblasts by inhibiting SH2-containing phosphatase-2 (SHP-2), thereby activating Rho-GTPase signaling. Here, we have examined the effects of calpeptin on stress fiber and junctional complex assembly in Madin-Darby canine kidney (MDCK) and LLC-PK epithelial cells. Calpeptin induced disassembly of stress fibers and inhibition of Rho GTPase activity in MDCK cells. Interestingly, calpeptin augmented stress fiber formation in LLC-PK epithelial cells. Calpeptin treatment of MDCK cells resulted in a displacement of zonula occludens-1 (ZO-1) and occludin from cell-cell junctions and a loss of phosphotyrosine on ZO-1 and ZO-2, without any detectable effect on tight junction permeability. Surprisingly, calpeptin increased paracellular permeability in LLC-PK cells even though it did not affect tight junction assembly. Calpeptin also modulated adherens junction assembly in MDCK cells but not in LLC-PK cells. Calpeptin treatment of MDCK cells induced redistribution of E-cadherin and -catenin from intercellular junctions and reduced the association of p120ctn with the E-cadherin/catenin complex. Together, our studies demonstrate that calpeptin differentially regulates stress fiber and junctional complex assembly in MDCK and LLC-PK epithelial cells, indicating that these pathways may be regulated in a cell line-specific manner. calpeptin; tight junctions; adherens junctions; Rho; cadherin; p120ctn  相似文献   

15.
Non-muscle myosin II (NMII) motor proteins are responsible for generating contractile forces inside eukaryotic cells. There is also a growing interest in the capacity for these motor proteins to influence cell signaling through scaffolding, especially in the context of RhoA GTPase signaling. We previously showed that NMIIA accumulation and stability within specific regions of the cell cortex, such as the zonula adherens (ZA), allows the formation of a stable RhoA signaling zone. Now we demonstrate a key role for Coronin 1B in maintaining this junctional pool of NMIIA, as depletion of Coronin 1B significantly compromised myosin accumulation and stability at junctions. The loss of junctional NMIIA, upon Coronin 1B knockdown, perturbed RhoA signaling due to enhanced junctional recruitment of the RhoA antagonist, p190B Rho GAP. This effect was blocked by the expression of phosphomimetic MRLC-DD, thus reinforcing the central role of NMII in regulating RhoA signaling.  相似文献   

16.
Afadin is a novel regulator of epithelial cell junctions assembly. However, its role in the formation of endothelial cell junctions and the regulation of vascular permeability remains obscure. We previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) in the in vitro and in vivo models of lung endothelial barrier dysfunction and acute lung injury, which were mediated by Rac GTPase. This study examined a role of afadin in the OxPAPC-induced enhancement of interactions between adherens junctions and tight junctions as a novel mechanism of endothelial cell (EC) barrier preservation. OxPAPC induced Rap1-dependent afadin accumulation at the cell periphery and Rap1-dependent afadin interaction with adherens junction and tight junction proteins p120-catenin and ZO-1, respectively. Afadin knockdown using siRNA or ectopic expression of afadin mutant lacking Rap1 GTPase binding domain suppressed OxPAPC-induced EC barrier enhancement and abolished barrier protective effects of OxPAPC against thrombin-induced EC permeability. Afadin knockdown also abolished protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results demonstrate for the first time a critical role of afadin in the regulation of vascular barrier function in vitro and in vivo via coordination of adherens junction-tight junction interactions.  相似文献   

17.
Distant organ metastasis is linked to poor prognosis during cancer progression. The expression level of the focal adhesion adapter protein paxillin varies among different human cancers, but its role in tumor progression is unclear. Herein we utilize a newly generated PyMT mammary tumor mouse model with conditional paxillin ablation in breast tumor epithelial cells, combined with in vitro three-dimensional (3D) tumor organoids invasion analysis and 2D calcium switch assays, to assess the roles for paxillin in breast tumor cell invasion. Paxillin had little effect on primary tumor initiation and growth but is critical for the formation of distant lung metastasis. In paxillin-depleted 3D tumor organoids, collective cell invasion was substantially perturbed. The 2D cell culture revealed paxillin-dependent stabilization of adherens junctions (AJ). Mechanistically, paxillin is required for AJ assembly through facilitating E-cadherin endocytosis and recycling and HDAC6-mediated microtubule acetylation. Furthermore, Rho GTPase activity analysis and rescue experiments with a RhoA activator or Rac1 inhibitor suggest paxillin is potentially regulating the E-cadherin-dependent junction integrity and contractility through control of the balance of RhoA and Rac1 activities. Together, these data highlight new roles for paxillin in the regulation of cell–cell adhesion and collective tumor cell migration to promote the formation of distance organ metastases.  相似文献   

18.
Signalling by the GTPase RhoA, a key regulator of epithelial cell behaviour, can stimulate opposing processes: RhoA can promote junction formation and apical constriction, and reduce adhesion and cell spreading. Molecular mechanisms are thus required that ensure spatially restricted and process-specific RhoA activation. For many fundamental processes, including assembly of the epithelial junctional complex, such mechanisms are still unknown. Here we show that p114RhoGEF is a junction-associated protein that drives RhoA signalling at the junctional complex and regulates tight-junction assembly and epithelial morphogenesis. p114RhoGEF is required for RhoA activation at cell-cell junctions, and its depletion stimulates non-junctional Rho signalling and induction of myosin phosphorylation along the basal domain. Depletion of GEF-H1, a RhoA activator inhibited by junctional recruitment, does not reduce junction-associated RhoA activation. p114RhoGEF associates with a complex containing myosin II, Rock II and the junctional adaptor cingulin, indicating that p114RhoGEF is a component of a junction-associated Rho signalling module that drives spatially restricted activation of RhoA to regulate junction formation and epithelial morphogenesis.  相似文献   

19.
Regulation of ezrin and other ERM proteins is not completely understood, but the involvement of Rho GTPases seems crucial. In this work, expression plasmids encoding full-length, deleted or truncated ezrin were constructed and coexpressed with Rac1 GTPase in HeLa human epithelial cells in order to elucidate the mechanisms of ezrin activation and function. We observed induction of actin stress fiber formation by ezrin constructs harboring the F-actin binding site but devoid of sequences required for intra- or intermolecular binding. Stress fiber-inducing ezrin mutants were localized in adherens junctions containing N-cadherin but no E-cadherin, and also colocalized with F-actin in stress fibers. This localization required the activity of Rac1 and phosphatidylinositol-4-phosphate 5-kinase and involved RhoA. We suggest that localization of ezrin in adherens junctions is regulated by Rac in a manner involving PIPK.  相似文献   

20.
The retinoblastoma protein (pRb) is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号