首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
T-antigen (the simian virus 40 A cistron protein) was purified by immunoprecipitation and electrophoresis on polyacrylamide gels from monkey kidney CV-1 cells infected with simian virus S (SV-S), dl1263, or dl1265 and digested with trypsin. The tryptic peptides, labeled with [35S]methionine, [35S]cysteine, or [3H]proline, were fractionated either by chromatography on Chromobead-P resin or by two-dimensional electrophoresis and chromatography on cellulose thin layers. The T-antigen of SV-S was shown to give rise to a proline-rich (approximately 6 mol of proline) tryptic peptide which was absent in dl1265 T-antigen and hence, on the basis of DNA sequence data, must originate from the C-terminus of the SV-S protein. T-antigen from dl1265, but not SV-S, yielded a cysteine-rich terminal tryptic peptide. The presence of these cysteines caused the protein to be retarded during electrophoresis under the usual conditions in polyacrylamide gels. The T-antigen of dl1263 possessed the proline-rich tryptic peptide; the data are consistent with there being only one peptide altered by the deletion. Both deletion mutants produced a T-antigen that had a higher electrophoretic mobility than SV-S T-antigen but still a larger apparent molecular weight than was predicted by the DNA sequence. The major form of T-antigen found in several lines of 3T3 cells transformed by these mutants was indistinguishable from the T-antigen found in infected cells, and in addition seemed to associate normally with the host-coded 53,000-dalton protein. Except for a minor form of T-antigen with a slightly lower mobility in gels but the same C-terminus, no other polypeptides were detected among the extracted and immunoprecipitated proteins whose electrophoretic mobility was affected by either deletion.  相似文献   

2.
Coinfection of monkey cells with simian virus 40 (SV40) and adenovirus type 2 (Ad2) increased the Ad2 yield 1,000-fold over that obtained by Ad2 infection alone of monkey cells (A. S. Rabson, G. T. O'Conor, I. K. Berezesky, and F. J. Paul, Proc. Soc. Exp. Biol. Med. 116:187-190, 1964). The ability of viable mutants of SV40 that contain deletions at various sites in the viral DNA to enhance Ad2 growth in monkey cells was examined. Only those mutants with deletions near the 3' end of the early region were deficient in providing this helper function. Mutants dl1265, lacking 39 base pairs at map position 0.18, and dl1263, lacking 33 base pairs at map position 0.20 (H. van Heuverswyn, C. Cole, P. Berg, and W. Fiers, J. Virol. 30:936-941, 1979), were approximately 4 and 30% as effective as wild-type SV40, respectively. The extent of enhancement of Ad2 yield depended on the multiplicity of infection by SV40, but not by Ad2 (at a multiplicity of infection of 相似文献   

3.
The phosphorylation sites of simian virus 40 (SV40) large tumor (T) antigens have been extensively studied in productive infection of monkey cells. In this study, we analyzed the phosphorylation sites of large T antigen from SV40-infected nonpermissive mouse cells by partial proteolysis fingerprints and analysis of the phosphoamino acids present in the resulting fragments. The wild-type virus and deletion mutants (dl1263, dl1265, dl2194, and dl2198) were used for infection. On the basis of our results and published data (M. Schwyzer, R. Weil, and H. Zuber, J. Biol. Chem. 225:5627-5634, 1980), a cleavage map of large T antigen was established. It was reported that at least four sites of phosphorylation were present. The amino-terminal part of the molecule contained both phosphoserine and phosphothreonine. One phosphothreonine residue was located in the prolinerich C-terminal end of the molecule at position 701 or 708. On the basis of the concensus as to the amino acid sequence surrounding the recognition sites for protein kinases, it was possible to more precisely locate this phosphothreonine at residue 701. Moreover, the C-terminal part of the molecule contained phosphoserine at a more internal position. In addition, this study firmly established the presence of a phosphothreonine in the N-terminal part of large T antigen. In conclusion, it was shown that the location of phosphorylation sites of large T antigen produced by nonpermissive mouse cells infected by SV40 is strikingly similar to that reported by other groups for large T antigen produced by SV40-infected permissive cells.  相似文献   

4.
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.  相似文献   

5.
Affinity-purified medium T antigen of wild-type polyomavirus and dl8, a transforming mutant with a deletion in the medium T gene, is associated with three cellular proteins with apparent molecular weights of 88,000 (88K protein), 61,000 (61K protein), and 37,000 (37K protein). Medium T antigen encoded by the nontransforming hrt mutants fails to associate with these proteins, whereas medium T antigen of the nontransforming mutant dl1015 is able to do so. Medium T antigen of the nontransforming mutant dl23 binds to the 61K and 37K proteins; however, binding to the 88K protein is uncertain. The pattern of complex formation between these proteins and medium T antigen resembles that of pp60c-src and medium T antigen. The binding of medium T antigen to the 88K, 61K, and 37K proteins, as well as to pp60c-src, might represent a necessary but insufficient step in transformation. By mixing extracts from infected and uninfected cells, complex formation between medium T antigen and the 88K, 61K, and 37K proteins can be demonstrated in vitro. Pulse-chase experiments indicated that in vivo the association between medium T antigen and the 61K and 37K proteins is a slow process. The latter two proteins are probably bound to each other in uninfected cells. On two-dimensional gels of whole-cell extract, the 61K protein comigrated with a minor protein with an isoelectric point of 5.2. The 61K protein was neither phosphorylated nor glycosylated. Polyomavirus tumor serum precipitated the 61K and 37K proteins independently of medium T antigen. Therefore, the 61K protein or the 37K protein or both have the properties of a cellular tumor antigen.  相似文献   

6.
The mutation in the temperature-sensitive tsA58 mutant T antigen (Ala-438----Val) lies within the presumptive ATP-binding fold. We have constructed a recombinant baculovirus that expresses large quantities of the tsA58 T antigen in infected insect cells. The mutant T antigen mediated simian virus 40 origin-containing DNA (ori-DNA) synthesis in vitro to nearly the same extent as similar quantities of wild-type T antigen at 33 degrees C. However, if wild-type and tsA58 T antigens were heated at 41 degrees C in replication extracts prior to addition of template DNA, the tsA58 T antigen but not the wild type was completely inactivated. The mutant protein displayed greater thermosensitivity for many of the DNA replication activities of T antigen than did the wild-type protein. Some of the replication functions of tsA58 T antigen were differentially affected depending on the presence or absence of ATP during the preheating period. When tsA58 T antigen was preheated in the presence of ATP at 41 degrees C for a time sufficient to completely inactivate its ability to replicate ori-DNA in vitro, it displayed substantial ATPase and normal DNA helicase activities. Conversely, when preheated in the absence of nucleotide, it completely lost both ATPase and helicase activities. Preheating tsA58 T antigen, even in the presence of ATP, led to drastic reductions in its ability to bind to and unwind DNA containing the replication origin. The mutant T antigen also displayed thermosensitivity for binding to and unwinding nonspecific double-stranded DNA in the presence of ATP. Our results suggest that the interactions of T antigen with ATP that are involved in T-antigen DNA binding and DNA helicase activities are different. Moreover, we conclude, consistent with its phenotype in vivo, that the tsA58 T antigen is defective in the initiation but not in the putative elongation functions of T antigen in vitro.  相似文献   

7.
We have isolated a simian virus 40 deletion mutant, F8dl, that lacks the sequences from 0.168 to 0.424 map units. The deleted sequences represent about one-half of the coding region for large T antigen. We present evidence here that F8dl is able to transform mouse cells in a focus assay and that cell lines derived from these foci exhibit fully transformed phenotypes, have integrated mutant genomes, and express mutant-encoded proteins. This result implies that the region of the simian virus 40 genome between 0.168 and 0.424 map units is not essential for the maintenance of transformation. In addition, we have found that cells fully transformed by F8dl produce a 53,000-dalton nonviral tumor antigen (p53) that is as unstable as the p53 of untransformed cells. From this result we infer that transformation by simian virus 40 does not require the stabilization of p53.  相似文献   

8.
A mutation in polyomavirus large T antigen which affects viral DNA synthesis was discovered in strain NG59RA (RA). The effect was most visible in nonpermissive cells. Although a substantial yield in DNA synthesis is normally observed in infections of Fischer rat cells when these are maintained at 33 degrees C (D.L. Hacker, K.H. Friderici, C. Priehs, S. Kalvonjian, and M.M. Fluck, p. 173-181, in R.E. Moses and W.C. Summers, ed., DNA Replication and Mutagenesis, 1988; D.L. Hacker and M.M. Fluck, Mol. Cell. Biol., in press), a 10- to 20-fold decrease in yield was obtained in infections with RA. The yield of free viral DNA in RA transformants was also strongly diminished, whether the transformants were maintained at 37 or 33 degrees C. A large reduction in the apparent number of integration sites, as well as a small reduction in the incidence of tandem integration of the viral genome, was observed in F-111 or FR-3T3 cells transformed by the mutant strain. This appears not to be directly related to the number of integration templates. A DNA fragment was identified which rescues these phenotypes. The fragment is located between the HindIII and NsiI restriction sites (nucleotides 1656 to 1910), a region which encodes only large T antigen. Sequence analysis of this region reveals a C-to-G transition at nucleotide 1791 which causes a proline-to-alanine change in the amino acid sequence of large T antigen. No other mutations have been previously reported in this region of large T antigen.  相似文献   

9.
On the basis of earlier findings showing that H5hr1 (hr1) is cold sensitive for transformation, a series of mutants were constructed so that they contained deletions or insertions in different sites of early region 1a (E1a) to ascertain: (i) whether the cold-sensitive phenotype of hr1 was the result of the identified single-base pair deletion of nucleotide 1,055 or due to a missense mutation at another site and (ii) what region and how much of the E1a 51-kilodalton protein is actually required to produce cell transformation. A mutant, H5dl101 (dl101), was constructed to contain a 5-base pair deletion of nucleotides 1,008 to 1,012, which produced a frameshift and a subsequent stop codon at nucleotide 1,241. This mutant, which should encode a truncated 33-kilodalton protein in place of the wild-type 51-kilodalton protein, had a cold-sensitive phenotype for transformation essentially identical to hr1. Consonant with this finding, a mutant (H5in106) engineered to contain a 16-base pair insertion initiated after nucleotide 1,009, with a stop codon beginning at the newly inserted nucleotide 1,013, also had a cold-sensitive phenotype like hr1 and dl101. It is striking, however, that a mutant (H5dl105) with a 69-base pair deletion beginning at nucleotide 1,003, and having a stop codon at nucleotide 1,544, was totally defective for transformation at any temperature. Transfection studies with plasmids containing the E1a or E1a and E1b genes of sub309, hr1, and dl101 further revealed that the cold-sensitive transformation phenotype observed could be exhibited in the absence of viral E1b gene expression.  相似文献   

10.
The phosphorylation sites of simian virus 40 (SV40) large tumor (T) antigens have been analyzed by partial proteolysis peptide mapping and phosphoamino acid analysis of the resulting products. At least four sites were found to be phosphorylated. An amino-terminal part of the molecule contained both phosphoserine and phosphothreonine. One phosphothreonine residue was located in the proline-rich carboxy-terminal end of the molecule, either at position 701 or at position 708. The mutant dl 1265, which is defective in adenovirus helper function, lacked this phosphorylation site. In addition, the carboxy-terminal part of the molecule contained phosphoserine at a more central position. T-antigen-associated proteins of SV40-transformed cell (nonviral T; 51,000 to 55,000 daltons) also contained multiple phosphorylation sites involving at least two serine residues in mouse antigens and an additional threonine residue in rat, human, and monkey antigens. The latter residue and at least one phosphoserine residue were located near one terminus of the human NVT molecule. We did not find any evidence for phosphorylation of tyrosine residues in any of the multiple species of either large T or nonviral T molecules. Several forms of large T antigens were extracted from both SV40-transformed and SV40-infected permissive and nonpermissive cells, and their phosphorylation patterns were compared. No evidence was found for a different phosphorylation pattern of T antigen in transformed cells.  相似文献   

11.
To study correlations between cellular transformation and the biochemical properties of polyomavirus middle T antigen, middle T cDNAs have been derived from the polyomavirus mutants dl1015, dl23, and NG59b and have been introduced into rodent fibroblast cell lines by using a retrovirus vector. It was found that all three mutants are completely defective in inducing growth in soft agar but possess a range of activities in assays of focus formation on cell monolayers. Furthermore, when assays of middle T antigen-associated kinase activities were performed in vitro, a correlation between the level of associated phosphatidylinositol kinase activity and the ability of mutant middle T antigens to induce focus formation was observed. However, the association of this activity with middle T antigen does not appear to be sufficient to bring about full transformation, since the middle T antigen derived from dl1015 is completely defective for soft-agar growth but is associated with a level of phosphatidylinositol kinase activity which is comparable to that of the wild type. Therefore, some other unidentified middle T antigen function may also be required for full transformation.  相似文献   

12.
SV40 large tumor antigen (T antigen): database of mutants.   总被引:1,自引:0,他引:1       下载免费PDF全文
The SV40 T antigen database (http://www.pitt.edu/pipaslab/) lists viruses and plasmids expressing mutant forms of large T antigen. Each entry contains information regarding the mutant designation, mutant type, virus strain, nucleotide change, amino acid change and pertinent references. The database is now available as an internet searchable index.  相似文献   

13.
The ability of simian virus 40-encoded large T antigen to disrupt the growth control of a variety of cell types is related to its ability to interfere with certain cellular proteins, such as p53 and the retinoblastoma susceptibility gene product (pRB). We have used wild-type and mutant forms of T antigen in transgenic mice to dissect the roles of pRB, p53, and other cellular proteins in tumorigenesis of different cell types. In this study, using a cell-specific promoter to target expression specifically to brain epithelium (the choroid plexus) and to B and T lymphoid cells, we characterize the tumorigenic capacity of a T-antigen fragment that comprises only the amino-terminal 121 residues. This fragment (dl1137) retains the ability to interact with pRB and p107 but lacks the p53-binding domain. While loss of the p53-binding region results in loss of the capacity to induce lymphoid abnormalities, dl1137 retains the ability to induce choroid plexus tumors that are histologically indistinguishable from those induced by wild-type T antigen. Tumors induced by dl1137 develop much more slowly, however, reaching an end point at around 8 months of age rather than at 1 to 2 months. Analysis of tumor progression indicates that tumor induction by dl1137 does not require secondary genetic or epigenetic events. Rather, the tumor growth rate is significantly slowed, indicating that the T-antigen C-terminal region contributes to tumor progression in this cell type. In contrast, the pRB-binding region appears essential for tumorigenesis as mutation of residue 107, known to disrupt pRB and p107 binding to wild-type T antigen, abolishes the ability of the dl1137 protein to induce growth abnormalities in the brain.  相似文献   

14.
15.
Cyanobacteria are known to survive in iron-deficient environments, but the ways in which they acquire Fe and acclimate are not completely understood. Here we report a novel gene sll1263 that is required for Synechocystis sp. strain PCC 6803 to grow under iron-deficient conditions. sll1263 encodes a putative cation diffusion facilitator protein (CDF) that shows 50% amino acid similarity with ferrous iron efflux protein (FieF) of heterotrophic bacteria. In bacteria, the gene product is involved in metal export from the cell, but in Synechocystis sll1263 plays a role in iron uptake. The results show that expression of sll1263 was induced by iron-deficient conditions and its inactivation significantly decreased the growth rate of an sll1263(-) mutant. Other genes known to be required for Fe acquisition were also strongly up-regulated in the mutant even in the presence of high Fe. Overexpression of sll1263 increased growth under iron deficiency but reduced growth under high-iron stress, suggesting that the gene product was involved in iron uptake rather than detoxification. Expression of FieF in the sll1263(-) mutant was unable to rescue the Fe-deficient phenotype, but Sll1263 completely restored it. Measurements of cellular iron content and the iron uptake rate showed that they were significantly less in the sll1263(-) mutant than in the wild type, consistent with a role for sll1263 in iron uptake. We hypothesize that the low-iron habitats and high-iron requirements of cyanobacteria may be the reason why cyanobacterial CDF protein functions in Fe uptake and not efflux as in non-photosynthetic bacteria.  相似文献   

16.
We constructed a tsB4/dl884 double-mutant helper virus and used it to isolate two simian virus 40 early region deletion mutants that lack about half of the DNA sequences normally used to encode the large tumor antigen (T). Both mutants make a normal-sized small t antigen, but neither mutant can replicate its DNA in the absence of a T+ helper.  相似文献   

17.
We have constructed a dl884/tsA58 double mutant and a t+T- early-region deletion mutant and have used these mutants to study the roles of the simian virus 40 tumor antigens (T and t) in transformation. Our major conclusions are that (i) although the mutant tsA58 is not temperature sensitive for the maintenance of transformation, the dl884/tsA58 double mutant is; (ii) small t antigen can provide at least one, but not all, of the functions required for the maintenance of transformation; and (iii) at least two different functions are required for the maintenance of simian virus 40 transformation.  相似文献   

18.
The simian virus 40 (SV40) T antigen host range mutants dl1066 and dl1140 display a postreplicative block to plaque formation which suggests a novel role for T antigen late in the viral life cycle. The host range mutants dl1066 and dl1140 are able to grow in and plaque on BSC but not on CV1 monkey kidney cells, a normally permissive host. Previous work showed that in CV1 cells infected with dl1066 and dl1140, levels of viral DNA replication and of late capsid protein accumulation were only slightly reduced and the failure to accumulate agnoprotein was not likely to be the major factor responsible for the mutants' growth defect. Here we show that the host range mutants are defective in the assembly of viral particles. SV40 assembly proceeds as the progressive conversion of 75S viral chromatin complexes to 200S-240S assembled virions. When virus-infected cell extracts are separated on 5 to 40% sucrose gradients, wild-type extracts show the greatest accumulation of viral late protein in the 200S-240S fractions corresponding to the assembled virus peak and lesser amounts in the 75S-150S fractions corresponding to immature assembly intermediates. The host range mutants dl1066 and dl1140 grown in nonpermissive CV1 cells, however, failed to assemble any appreciable amounts of mature 200S-240S virions and accumulate 75S intermediates, whereas in permissive BSC cells, levels of assembly were more slightly reduced than those of the wild type. Analysis of the protein composition of gradient fractions suggests that SV40 assembly proceeds by a mechanism similar to that proposed for polyomavirus and suggests that the host range blockage may result from a failure of such mutants to add VP1 to 75S assembly intermediates.  相似文献   

19.
20.
Cell lines transformed by simian virus 40 mutant F8dl (deleted from 0.168 to 0.424 map units, corresponding to the carboxy-terminal 62% of the wild-type simian virus 40 large tumor antigen) are tumorigenic in nude mice. Four of five C3H10T1/2 cell lines transformed by F8dl were tumorigenic in nude mice, whereas two of two wild-type transformants were tumorigenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号