首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We have determined the complete nucleotide sequence of pAQ1,the smallest plasmid of the unicellular marine cyanobacteriumSynechococcus sp. PCC7002. The plasmid consists of 4,809 bpand has at least four open reading frames that potentially encodepolypeptides of 50 or more amino acids. We found that a palindromicelement, the core sequence of which is G(G/A)CGATCGCC, is over-representednot only in plasmid pAQ1 but also in the accumulated cyanobacterialgenomic sequences from Synechococcus sp. PCC6301, PCC7002, PCC7942,vulcanus and Synechocystis sp. PCC6803 within GenBank and EMBLdatabases. It suggests that this sequence might mediate generearrangement, thus increasing genetic diversity, since recombinationevents are frequent in cyanobacteria.  相似文献   

2.
To study thermal adaptations in the cyanobacterium, Synechococcus sp. PCC 7002, we screened about 3,000 mutants for their tolerance to high temperature, and found one, SHT1, that is sensitive to high-temperature stress. The mutant had a modified gene construct in the endogenous plasmid, pAQ1. One of the four ORFs, ORF93, was duplicated, and its mRNA level was higher than in the wild type. At 38 degrees C, the growth of SHT1 was retarded as compared with the wild type, and above 38 degrees C, almost all the cells of SHT1 died. This temperature is much lower than that required for induction of heat shock proteins. Interestingly, in both the wild type and SHT1, the thermal stability of oxygen-evolving machinery increased upon acclimation to high temperatures. These findings indicate that the lack of thermal tolerance in the SHT1 strain is likely independent of the adaptation of the PSII complex and heat shock responses, whereas there are essential contributions of genes in the endogenous plasmid to the adaptation to high temperature. Thus, understanding the role of pAQ1 in the adaptation of Synechococcus sp. PCC 7002 to high-temperature environments is the first step in elucidating the function of this plasmid.  相似文献   

3.
We have developed a simple procedure for generating mutants of the cyanobacterium Synechococcus sp. strain PCC 7942 in which the site of the lesion can be readily identified. This procedure involves transforming Synechococcus sp. strain PCC 7942 with a library of its own DNA that was fully digested with Sau3A and ligated into the plasmid vector pUC8. The homologous integration of the recombinant plasmid into the genome will often result in the disruption of a gene and the loss of gene function. We have used this method to generate many mutants of Synechococcus sp. strain PCC 7942 which grow as multicellular filaments rather than as unicells. Since the gene harboring the lesion was tagged with pUC8, it was easily isolated. In this paper, we discuss the usefulness of this procedure for the generation of mutants, and we characterize one mutant in which the lesion may be in an operon involved in the assembly of lipopolysaccharides.  相似文献   

4.
Abstract The region of the genome encoding the glucose-6-phosphate dehydrogenase gene zwf was analysed in a unicellular cyanobacterium, Synechococcus sp. PCC 7942, and a filamentous, heterocystous cyanobacterium, Anabaena sp. PCC 7120. Comparison of cyanobacterial zwf sequences revealed the presence of two absolutely conserved cysteine residues which may be implicated in the light/dark control of enzyme activity. The presence in both strains of a gene fbp , encoding fructose-1,6-bisphosphatase, upstream from zwf strongly suggests that the oxidative pentose phosphate pathway in these organisms may function to completely oxidize glucose 6-phosphate to CO2. The amino acid sequence of fructose-1,6-bisphosphatase does not support the idea of its light activation by a thiol/disulfide exchange mechanism. In the case of Anabaena sp. PCC 7120, the tal gene, encoding transaldolase, lies between zwf and fbp .  相似文献   

5.
6.
State transitions in cyanobacteria are a physiological adaptation mechanism that changes the interaction of the phycobilisomes with the Photosystem I and Photosystem II core complexes. A random mutagenesis study in the cyanobacterium Synechocystis sp. PCC6803 identified a gene named rpaC which appeared to be specifically required for state transitions. rpaC is a conserved cyanobacterial gene which was tentatively suggested to code for a novel signal transduction factor. The predicted gene product is a 9-kDa integral membrane protein. We have further examined the role of rpaC by overexpressing the gene in Synechocystis 6803 and by inactivating the ortholog in a second cyanobacterium, Synechococcus sp. PCC7942. Unlike the Synechocystis 6803 null mutant, the Synechococcus 7942 null mutant is unable to segregate, indicating that the gene is essential for cell viability in this cyanobacterium. The Synechocystis 6803 overexpressor is also unable to segregate, indicating that the cells can only tolerate a limited gene copy number. The non-segregated Synechococcus 7942 mutant can perform state transitions but shows a perturbed phycobilisome-Photosystem II interaction. Based on these results, we propose that the rpaC gene product controls the stability of the phycobilisome-Photosystem II supercomplex, and is probably a structural component of the complex.  相似文献   

7.
The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 signals the cellular state of nitrogen assimilation relative to CO2 fixation by being phosphorylated at a seryl residue. In this study, we first determined the location of the phosphorylated seryl residue within the PII amino acid sequence. The phosphorylation site exhibits an RXS motif, a recognition sequence characteristic for cyclic AMP-dependent protein serine kinases from eukaryotes. We established an in vitro PII phosphorylation assay to further analyze the PII kinase activity in Synechococcus sp. strain PCC 7942. ATP was used specifically as a phosphoryl donor, and the PII kinase activity was shown to be stimulated by alpha-ketoglutarate. Unlike the PII-modifying uridylyltransferase- and uridylyl-removing enzyme characterized in proteobacteria, the activity of the PII kinase from the cyanobacterium did not respond to glutamine.  相似文献   

8.
The integrase of actinophage R4, which belongs to the large serine-recombinase family, catalyzes site-specific recombination between two distinct attachment site sequences of the phage (attP) and actinomycete Streptomyces parvulus 2297 chromosome (attB). We previously reported that R4 integrase (Sre) catalyzed site-specific recombination both in vivo and in vitro. In the present study, a Sre-based system was developed for the stepwise site-specific integration of multiple genes into the chromosome of cyanobacterium Synechocystis sp. PCC 6803 (hereafter PCC 6803). A transgene-integrated plasmid with two attP sites and a non-replicative sre-containing plasmid were co-introduced into attB-inserted PCC 6803 cells. The transiently expressed Sre catalyzed highly efficient site-specific integration between one of the two attP sites on the integration plasmid and the attB site on the chromosome of PCC 6803. A second transgene-integrated plasmid with an attB site was integrated into the residual attP site on the chromosome by repeating site-specific recombination. The transformation frequencies (%) of the first and second integrations were approximately 5.1 × 10?5 and 8.2 × 10?5, respectively. Furthermore, the expression of two transgenes was detected. This study is the first to apply the multiple gene site-specific integration system based on R4 integrase to cyanobacteria.  相似文献   

9.
In Cyanophora paradoxa, the allophycocyanin apoprotein subunits, alpha and beta, are encoded in the cyanelle (plastid) genome. These genes were transferred to the cyanobacterium Synechococcus sp. PCC 7002 on a plasmid replicon. Phycobilisomes isolated from transformed cyanobacteria were found to contain C. paradoxa allophycocyanin subunits. Thus, these plastid genes are expressed in the cyanobacterium as polypeptides which become linked to a chromophore and are incorporated into the light-harvesting apparatus.  相似文献   

10.
In dark-adapted plants and algae, chlorophyll a fluorescence induction peaks within 1s after irradiation due to well documented photochemical and non-photochemical processes. Here we show that the much slower fluorescence rise in cyanobacteria (the so-called "S to M rise" in tens of seconds) is due to state 2 to state 1 transition. This has been demonstrated in particular for Synechocystis PCC6803, using its RpaC(-) mutant (locked in state 1) and its wild-type cells kept in hyperosmotic suspension (locked in state 2). In both cases, the inhibition of state changes correlates with the disappearance of the S to M fluorescence rise, confirming its assignment to the state 2 to state 1 transition. The general physiological relevance of the SM rise is supported by its occurrence in several cyanobacterial strains: Synechococcus (PCC 7942, WH 5701) and diazotrophic single cell cyanobacterium (Cyanothece sp. ATCC 51142). We also show here that the SM fluorescence rise, and also the state transition changes are less prominent in filamentous diazotrophic cyanobacterium Nostoc sp. (PCC 7120) and absent in phycobilisome-less cyanobacterium Prochlorococcus marinus PCC 9511. Surprisingly, it is also absent in the phycobiliprotein rod containing Acaryochloris marina (MBIC 11017). All these results show that the S to M fluorescence rise reflects state 2 to state 1 transition in cyanobacteria with phycobilisomes formed by rods and core parts. We show that the pronounced SM fluorescence rise may reflect a protective mechanism for excess energy dissipation in those cyanobacteria (e.g. in Synechococcus PCC 7942) that are less efficient in other protective mechanisms, such as blue light induced non-photochemical quenching. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

11.
12.
The ferredoxin-dependent nitrate reductase from the cyanobacterium Synechococcus sp. PCC 7942 has been shown to form a high-affinity complex with ferredoxin at low ionic strength. This complex, detected by changes in both the absorbance and circular dichroism (CD) spectra, did not form at high ionic strength. When reduced ferredoxin served as the electron donor for the reduction of nitrate to nitrite, the activity of the enzyme declined markedly as the ionic strength increased. In contrast, the activity of the enzyme with reduced methyl viologen (a non-physiological electron donor) was independent of ionic strength. These results suggest that an electrostatically stabilized complex between Synechococcus nitrate reductase and ferredoxin plays an important role in the mechanism of nitrate reduction catalyzed by this enzyme. Treatment of Synechococcus nitrate reductase with either an arginine-modifying reagent or a lysine-modifying reagent inhibited the ferredoxin-dependent activity of the enzyme but did not affect the methyl viologen-dependent activity. Treatment with these reagents also resulted in a large decrease in the affinity of the enzyme for ferredoxin. Formation of a nitrate reductase complex with ferredoxin prior to treatment with either reagent protected the enzyme against loss of ferredoxin-dependent activity. These results suggest that lysine and arginine residues are present at the ferredoxin-binding site of Synechococcus nitrate reductase. Results of experiments using site-specific, charge reversal variants of the ferredoxin from the cyanobacterium Anabaena sp. PCC 7119 as an electron donor to nitrate reductase were consistent with a role for negatively charged residues on ferredoxin in the interaction with Synechococcus nitrate reductase.  相似文献   

13.
The ntcA gene from Synechococcus sp. strain PCC 7942 encodes a regulatory protein which is required for the expression of all of the genes known to be subject to repression by ammonium in that cyanobacterium. Homologs to ntcA have now been cloned by hybridization from the cyanobacteria Synechocystis sp. strain PCC 6803 and Anabaena sp. strain PCC 7120. Sequence analysis has shown that these ntcA genes would encode polypeptides strongly similar (77 to 79% identity) to the Synechococcus NtcA protein. Sequences hybridizing to ntcA have been detected in the genomes of nine other cyanobacteria that were tested, including strains of the genera Anabaena, Calothrix, Fischerella, Nostoc, Pseudoanabaena, Synechococcus, and Synechocystis.  相似文献   

14.
Upon exposure to low temperature under constant light conditions, the cyanobacterium Synechococcus sp. PCC 7942 exchanges the photosystem II reaction center D1 protein form 1 (D1:1) with D1 protein form 2 (D1:2). This exchange is only transient, and after acclimation to low temperature the cells revert back to D1:1, which is the preferred form in acclimated cells (Campbell, D., Zhou, G., Gustafsson, P., Oquist, G., and Clarke, A. K. (1995) EMBO J. 14, 5457-5466). In the present work we use thermoluminescence to study charge recombination events between the acceptor and donor sides of photosystem II in relation to D1 replacement. The data indicate that in cold-stressed cells exhibiting D1:2, the redox potential of Q(B) becomes lower approaching that of Q(A). This was confirmed by examining the Synechococcus sp. PCC 7942 inactivation mutants R2S2C3 and R2K1, which possess only D1:1 or D1:2, respectively. In contrast, the recombination of Q(A)(-) with the S(2) and S(3) states did not show any change in their redox characteristics upon the shift from D1:1 to D1:2. We suggest that the change in redox properties of Q(B) results in altered charge equilibrium in favor of Q(A). This would significantly increase the probability of Q(A)(-) and P680(+) recombination. The resulting non-radiative energy dissipation within the reaction center of PSII may serve as a highly effective protective mechanism against photodamage upon excessive excitation. The proposed reaction center quenching is an important protective mechanism because antenna and zeaxanthin cycle-dependent quenching are not present in cyanobacteria. We suggest that lowering the redox potential of Q(B) by exchanging D1:1 for D1:2 imparts the increased resistance to high excitation pressure induced by exposure to either low temperature or high light.  相似文献   

15.
将含有Anabaenasp.PCC7120反义glnA基因片段的穿梭表达质粒pDC-ATGS转化单细胞蓝藻聚球藻Syne-chococcus sp.PCC7942,通过同源重组,外源DNA定位整合到染色体上。经过抗菌素筛选,获得一种高效泌氨的Synechococcus sp.7942突变种。将此突变种固定化在聚氨脂泡沫中后,定量测定其谷氨酰胺合成酶(GS)活性。结果表明,固定化后的突变藻培养9d后泌氨活性比自由生活的野生藻高156倍,GS活性降低73.6%;其生长速度与同条件下野生藻相近,77K荧光光谱表明突变种固定化后光系统Ⅱ活性提高44%。  相似文献   

16.
In nitrogen-limiting conditions, approximately 10% of the vegetative cells in filaments of the cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 differentiate into nitrogen-fixing heterocysts. During the late stages of heterocyst differentiation, three DNA elements, each embedded within an open reading frame, are programmed to excise from the chromosome by site-specific recombination. The DNA elements are named after the genes that they interrupt: nifD, fdxN, and hupL. The nifD and fdxN elements each contain a gene, xisA or xisF, respectively, that encodes the site-specific recombinase required for programmed excision of the element. Here, we show that the xisC gene (alr0677), which is present at one end of the 9,435-bp hupL element, is required for excision of the hupL element. A strain in which the xisC gene was inactivated showed no detectable excision of the hupL element. hupL encodes the large subunit of uptake hydrogenase. The xisC mutant forms heterocysts and grows diazotrophically, but unlike the wild type, it evolved hydrogen gas under nitrogen-fixing conditions. Overexpression of xisC from a plasmid in a wild-type background caused a low level of hupL rearrangement even in nitrogen-replete conditions. Expression of xisC in Escherichia coli was sufficient to produce rearrangement of an artificial substrate plasmid bearing the hupL element recombination sites. Sequence analysis indicated that XisC is a divergent member of the phage integrase family of recombinases. Site-directed mutagenesis of xisC showed that the XisC recombinase has functional similarity to the phage integrase family.  相似文献   

17.
18.
When recombinant plasmids that were transferred to the cyanobacterium Anabaena sp. strain M-131 were transferred back to Escherichia coli, some of the transformants contained inserts. One of the insertion sequences (ISs) was characterized by sequencing. This 1,351-base-pair IS contained an open reading frame that was capable of encoding a peptide of 310 amino acids and had terminal sequences with distinctive structures, but it lacked terminal inverted repeats and did not duplicate target DNA upon insertion. The element bore no significant sequence homology to any sequence stored in the GenBank data base. Restriction analysis of the genomes of Anabaena sp. strain M-131 and Anabaena sp. strain PCC 7120 showed those strains to be closely related. Sequences homologous to the IS element were also present in the DNA of Anabaena strain PCC 7120, but the copy numbers and chromosomal locations of such sequences differed in the two strains. The largest visualized plasmid was 425 kilobases (kb) in M-131 and 410 kb in PCC 7120; at least the former plasmid contained multiple copies of the element, as did a 115-kb plasmid in M-131.  相似文献   

19.
Y Nishiyama  H Hayashi  T Watanabe    N Murata 《Plant physiology》1994,105(4):1313-1319
We investigated the factors responsible for the heat stability of photosynthetic oxygen evolution by examining thylakoid membranes from the cyanobacterium Synechococcus sp. PCC 7002. We found that treatment of the thylakoid membranes with 0.1% Triton X-100 resulted in a remarkable decrease in the heat stability of oxygen evolution, and that the heat stability could be restored by reconstituting the membranes with the components that had been extracted by Triton X-100. The protein responsible for the restoration of heat stability was purified from the Triton X-100 extract by two successive steps of chromatography. The purified protein had a molecular mass of 16 kD and exhibited the spectrophotometric properties of a c-type Cyt with a low redox potential. The dithionite-minus-ascorbate difference spectrum revealed an alpha band maximum at 551 nm. We were able to clone and sequence the gene encoding this Cyt from Synechococcus sp. PCC 7002, based on the partial amino-terminal amino acid sequence. The deduced amino acid sequence revealed a gene product consisting of a 34-residue transit peptide and a mature protein of 136 residues. The mature protein is homologous to Cyt c550, a Cyt with a low redox potential. Thus, our results indicate that Cyt c550 greatly affects the heat stability of oxygen evolution.  相似文献   

20.
A physical restriction map of the genome of the cyanobacterium Synechococcus sp. strain PCC 7002 was assembled from AscI, NotI, SalI, and SfiI digests of intact genomic DNA separated on a contour-clamped homogeneous electric field pulsed-field gel electrophoresis system. An average genome size of 2.7 x 10(6) bp was calculated from 21 NotI, 37 SalI, or 27 SfiI fragments obtained by the digestions. The genomic map was assembled by using three different strategies: linking clone analysis, pulsed-field fragment hybridization, and individual clone hybridization to singly and doubly restriction-digested large DNA fragments. The relative positions of 21 genes or operons were determined, and these data suggest that the gene order is not highly conserved between Synechococcus sp. strain PCC 7002 and Anabaena sp. strain PCC 7120.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号