首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nelson EH 《Oecologia》2007,151(1):22-32
Induced prey defenses can be costly. These costs have the potential to reduce prey survival or reproduction and, therefore, prey population growth. I estimated the potential for predators to suppress populations of pea aphids (Acyrthosiphon pisum) in alfalfa fields through the induction of pea aphid predator avoidance behavior. I quantified (1) the period of non-feeding activity that follows a disturbance event, (2) the effect of frequent disturbance on aphid reproduction, and (3) the frequency at which aphids are disturbed by predators. In combination, these three values predict that the disturbances induced by predators can substantially reduce aphid population growth. This result stems from the high frequency of predator-induced disturbance, and the observation that even brief disturbances reduce aphid reproduction. The potential for predators to suppress prey populations through induction of prey defenses may be strongest in systems where (1) predators frequently induce prey defensive responses, and (2) prey defenses incur acute survival or reproductive costs. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
Synopsis The population dynamics and predator-prey relationship of pike, Esox lucius, and perch, Perca fluviatilis, were examined in simple fish communities in two adjacent shallow lakes, Lochs Kinord and Davan, Deeside, Scotland. Few perch survive to age 3 but Z is low for fish > 3 years and perch live up to 17 years. Population fecundity remained relatively high and constant in perch because of the multi-age spawning stock and the presence of older more fecund perch. Growth rates of perch in both lochs are relatively high as a consequence of low stock abundance. The N, B, and P of adult perch were unusually low. The age range of pike, and N, B, P, and growth were in the range of values reported elsewhere. There was little variation in the strength of pike year classes and the importance of cannibalism and low occurrence of alternative prey in the lochs suggest that the populations were self-regulating. Cannibalism by adults was responsible for most of mortality in perch larvae, and predation by pike and adult perch was responsible for the majority of juvenile losses. This conclusion is supported by the high biomass ratios of pike:juvenile perch of 1.0–30.8. While the number of adult fish was almost equal, the biomass of adult pike was 2–3 × that of perch in Kinord and 6 × in Davan. In L. Kinord, where year class strength was stable, high predation pressure from perch and pike reduced perch abundance rather than eliminated year classes. Perch year classes fluctuated in abundance in L. Davan and were eliminated in the first summer in two sampling years. The pike, and particularly the perch populations, have features characteristic of fish communities in unperturbed ecosystems: namely, a wide range of age classes, stability in biomass with variation dampened by longevity, and low production.  相似文献   

3.
By timing reproduction to occur when predatory mortality on progeny is minimal, organisms may maximize recruitment to adult populations. Accordingly, an hypothesis to explain the greater importance of fall than spring spawning to North Carolina populations of bay scallops (Argopecten irradians) is that predatory mortality of bay scallop recruits is lower in fall and winter than spring and summer. To test this hypothesis, we measured predatory mortality of scallop recruits monthly. To infer the identities of predators that are most important in determining patterns of mortality of bay scallop recruits in spring and in fall, predatory mortality of bay scallop recruits was compared between the edge and interior of sheltered and exposed seagrass patches during the day and at night in May and November. Consideration of predatory mortality throughout the year indicated that mortality of scallop recruits over late spring and summer approaches 100% but is negligible over late fall and winter. In May, predatory mortality of scallop recruits was similar during day and night but greater at exposed than sheltered sites. In November, predatory mortality was greater during night than day and slightly greater at sheltered than exposed sites. In neither month did position within patch influence mortality, and at all times and places, missing and crushed scallops contributed a higher proportion than drilled scallops to the total dead. These spatio-temporal patterns of mortality of scallop recruits suggest that mud crabs, Dyspanopeus sayi, which are more abundant in exposed than sheltered seagrass beds during spring and can feed by day and night, are a likely major contributor to spatio-temporal pattern in mortality of scallop recruits in North Carolina. Blue crabs, Callinectes sapidus, which are many times more abundant in summer than winter, may also contribute to observed seasonal patterns in mortality. The dramatically lower rates of predation on bay scallops over the winter months appear to provide fall settlers with a temporal window of opportunity to recruit to the adult population. Although spring spawning contributes little to adult populations in most years because of high rates of predatory mortality during summer, we hypothesize that spring spawning persists because infrequent devastating perturbations, such as hurricanes and red tides, can result in complete failure of fall recruitment.  相似文献   

4.
Crossland MR  Alford RA  Shine R 《Oecologia》2009,158(4):625-632
Invasive species are widely viewed as unmitigated ecological catastrophes, but the reality is more complex. Theoretically, invasive species could have negligible or even positive effects if they sufficiently reduce the intensity of processes regulating native populations. Understanding such mechanisms is crucial to predicting ultimate ecological impacts. We used a mesocosm experiment to quantify the impact of eggs and larvae of the introduced cane toad (Bufo marinus) on fitness-related traits (number, size and time of emergence of metamorphs) of a native Australian frog species (Opisthodon ornatus). The results depended upon the timing of oviposition of the two taxa, and hence the life-history stages that came into contact. Growth and survival of O. ornatus tadpoles were enhanced when they preceded B. marinus tadpoles into ponds, and reduced when they followed B. marinus tadpoles into ponds, relative to when tadpoles of both species were added to ponds simultaneously. The dominant tadpole-tadpole interaction is competition, and the results are consistent with competitive priority effects. However, these priority effects were reduced or reversed when O. ornatus tadpoles encountered B. marinus eggs. Predation on toxic toad eggs reduced the survival of O. ornatus and B. marinus. The consequent reduction in tadpole densities allowed the remaining O. ornatus tadpoles to grow more rapidly and to metamorphose at larger body sizes (>60% disparity in mean mass). Thus, exposure to B. marinus eggs reduced the number of O. ornatus metamorphs, but increased their body sizes. If the increased size at metamorphosis more than compensates for the reduced survival, the effective reproductive output of native anurans may be increased rather than decreased by the invasive toad. Minor interspecific differences in the seasonal timing of oviposition thus have the potential to massively alter the impact of invasive cane toads on native anurans.  相似文献   

5.
The relationships between a predator population's mortality rate and its population size and stability are investigated for several simple predator-prey models with stage-structured prey populations. Several alternative models are considered; these differ in their assumptions about the nature of density dependence in the prey's population growth; the nature of stage-transitions; and the stage-selectivity of the predator. Instability occurs at high, rather than low predator mortality rates in most models with highly stage-selective predation; this is the opposite of the effect of mortality on stability in models with homogeneous prey populations. Stage-selective predation also increases the range of parameters that lead to a stable equilibrium. The results suggest that it may be common for a stable predator population to increase in abundance as its own mortality rate increases in stable systems, provided that the predator has a saturating functional response. Sufficiently strong density dependence in the prey generally reverses this outcome, and results in a decrease in predator population size with increasing predator mortality rate. Stability is decreased when the juvenile stage has a fixed duration, but population increases with increasing mortality are still observed in large areas of stable parameter space. This raises two coupled questions which are as yet unanswered; (1) do such increases in population size with higher mortality actually occur in nature; and (2) if not, what prevents them from occurring? Stage-structured prey and stage-related predation can also reverse the 'paradox of enrichment', leading to stability rather than instability when prey growth is increased.  相似文献   

6.
This article explores how different mechanisms governing the rate of change of the predators preference alter the dynamics of predator-prey systems in which the predator exhibits positive frequency-dependent predation. The models assume that individuals of the predator species adaptively adjust a trait that determines their relative capture rates of each of two prey species. The resulting switching behavior does not instantaneously attain the optimum for current prey densities, but instead lags behind it. Several mechanisms producing such lags are discussed and modeled. In all cases examined, our question is whether a realistic behavioral lag can significantly change the dynamics of the system relative to an analogous case in which the predators switching is effectively instantaneous. We also explore whether increasing the rate parameters of dynamic models of behavior results in convergence to the population dynamics of analogous models with instantaneous switching, and whether different behavioral models produce similar population dynamics. The analysis concentrates on systems that undergo endogenously generated predator-prey cycles in the absence of switching behavior. The average densities and the nature of indirect interactions are often sensitive to the rate of behavioral change, and are often qualitatively different for different classes of behavioral models. Dynamics and average densities can be very sensitive to small changes in parameters of either the prey growth or predator switching functions. These differences suggest that an understanding of switching in natural systems will require research into the behavioral mechanisms that govern lags in the response of predator preference to changes in prey density.  相似文献   

7.
Urban MC 《Oecologia》2007,154(3):571-580
Theoretical efforts suggest that the relative sizes of predators and their prey can shape community dynamics, the structure of food webs, and the evolution of life histories. However, much of this work has assumed static predator and prey body sizes. The timing of recruitment and the growth patterns of both predator and prey have the potential to modify the strength of predator–prey interactions. In this study, I examined how predator size dynamics in 40 temporary ponds over a 3-year period affected the survival of spotted salamander (Ambystoma maculatum) larvae. Across communities, gape-limited predator richness, but not size, was correlated with habitat duration (pond permanence). Within communities, mean gape-limited predator size diminished as the growing season progressed. This size reduction occurred because prey individuals grew into a body size refuge and because the largest of the predators left ponds by mid-season. Elevated gape-limited predation risk across time and space was predicted by the occurrence of two large predatory salamanders: marbled salamander larvae (Ambystoma opacum) and red-spotted newt adults (Notophthalmus viridescens). The presence of the largest gape-limited predator, A. opacum, predicted A. maculatum larval survival in the field. The distribution of large predatory salamanders among ponds and across time is expected to lead to differing community dynamics and to generate divergent natural selection on early growth and body size in A. maculatum. In general, a dynamic perspective on predator size often will be necessary to understand the ecology and evolution of species interactions. This will be especially true in frequently disturbed or seasonal habitats where phenology and ontogeny interact to determine body size asymmetries. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Summary The predatory gastropod Nucella lapillus, commonly preys upon the mussel, Mytilus edulis, and is thought to control the distribution and abundance of mussels on the rocky shores of New England, USA. In this study, done in Maine, USA, not only the presence of Nucella lapillus but also the roughness of the experimental surface and the presence of the herbivorous gastropod, Littorina littorea, were manipulated. Four types of surfaces were used as recruitment substrata for mussels: smooth bare granite, aggregations of the barnacle, Semibalanus balanoides, fiberglass resin castings of smooth bare granite and resin castings of aggregations of S. balanoides. To ensure that caged N. lapillus were not starving, barnacles were provided as alternative prey. Experiments showed no detectable effect of N. lapillus on the recruitment of M. edulis. Mussel recruitment was enhanced by surface rugosity and depressed by the activities of L. littorea. Analysis of covariance, using the number of algal species as the covariate, suggested that L. littorea reduced the number of newlyrecruited mussels by removing algae that provided recruitment sites, but no manipulations were done to test this conjecture. It is likely that previous reports of N. lapillus controlling mussel abundance are attributable to N. lapillus preying upon barnacles, which increase surface rugosity and enhance mussel recruitment. Review of literature on feeding preferences of N. lapillus supports this view. When handling times and prey availability are taken into account, Nucella shows a clear preference for barnacles over mussels.  相似文献   

9.
Almany GR 《Oecologia》2004,141(1):105-113
Greater structural complexity is often associated with greater abundance and diversity, perhaps because high complexity habitats reduce predation and competition. Using 16 spatially isolated live-coral reefs in the Bahamas, I examined how abundance of juvenile (recruit) and adult (non-recruit) fishes was affected by two factors: (1) structural habitat complexity and (2) the presence of predators and interference competitors. Manipulating the abundance of low and high complexity corals created two levels of habitat complexity, which was cross-factored with the presence or absence of resident predators (sea basses and moray eels) plus interference competitors (territorial damselfishes). Over 60 days, predators and competitors greatly reduced recruit abundance regardless of habitat complexity, but did not affect adult abundance. In contrast, increased habitat complexity had a strong positive effect on adult abundance and a weak positive effect on recruit abundance. Differential responses of recruits and adults may be related to the differential effects of habitat complexity on their primary predators. Sedentary recruits are likely most preyed upon by small resident predators that ambush prey, while larger adult fishes that forage widely and use reefs primarily for shelter are likely most preyed upon by large transient predators that chase prey. Increased habitat complexity may have inhibited foraging by transient predators but not resident predators. Results demonstrate the importance of habitat complexity to community dynamics, which is of concern given the accelerated degradation of habitats worldwide.  相似文献   

10.
11.
12.
How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species–species interactions to come into play. Our results give new insights into species'' response to environmental variation. They especially highlight the importance of considering both species'' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment.  相似文献   

13.
A new time-dependent continuous model of biomass size spectra is developed. In this model, predation is the single process governing the energy flow in the ecosystem, as it causes both growth and mortality. The ratio of predator to prey is assumed to be distributed: predators may feed on a range of prey sizes. Under these assumptions, it is shown that linear size spectra are stationary solutions of the model. Exploited fish communities are simulated by adding fishing mortality to the model: it is found that realistic fishing should affect the curvature and stability of the size spectrum rather than its slope.  相似文献   

14.
Summary We analyze the global behavior of a predator-prey system, modelled by a pair of non-linear ordinary differential equations, under constant-rate prey harvesting. By methods analogous to those used to study predator harvesting, we characterize the theoretically possible structures and transitions. With the aid of a computer simulation we construct examples to show which of these transitions can be realized in a biologically plausible model.Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the National Research Council of Canada, Grant No. 67-3138.  相似文献   

15.
16.
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions.  相似文献   

17.
1.?Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2.?To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3.?The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4.?The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5.?Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological communities. Second, kill rate is the primary statistic for many traditional models of predation. However, our work suggests that kill rate and PR are similarly important for understanding why predation is such a complex process.  相似文献   

18.
 Seagrass meadows are often important habitats for newly recruited juvenile fishes. Although substantial effort has gone into documenting patterns of association of fishes with attributes of seagrass beds, experimental investigations of why fish use seagrass habitats are rare. We performed two short-term manipulative field experiments to test (1) the effects of food supply on growth and densities of fish, and (2) effects of predation on the density and size distribution of fish recruits, and how this varies among habitat types. Experiments were conducted in Galveston Bay, Texas, and we focused on the common estuarine fish, pinfish Lagodon rhomboides. In the first experiment, replicate artifical seagrass and sand plots were either supplemented with food or left as controls. Recruitment of pinfish was significantly greater to seagrass than sand habitats; however, we detected no effect of food supplementation on the abundance of recruits in either habitat. Pinfish recruits in artifical seagrass grew at a significantly faster rate than those in sand habitats, and fish supplemented with food exhibited a greater growth rate than controls in both sand and artifical grass habitats. In our second experiment, we provided artificial seagrass and sand habitats with and without predator access. Predator access was manipulated with cages, and two-sided cages served as controls. Recruitment was significantly greater to the cage versus cage-control treatment, and this effect did not vary between habitats. In addition, the standard length of pinfish recruits was significantly larger in the predator access than in the predator exclusion treatment, suggesting size-selective predation on smaller settlers or density-dependent growth. Our results indicate that the impact of predation on pinfish recruits is equivalent in both sand and vegetated habitats, and thus differential predation does not explain the higher recruitment of pinfish to vegetated than to nonvegetated habitats. Since predators may disproportionately affect smaller fish, and a limited food resource appears to be more effectively utilized by fish in vegetated than in unvegetated habitats, we hypothesize that pinfish recruits may select vegetated habitats because high growth rates allow them to achieve a size that is relatively safe from predation more quickly. Received: 10 October 1996 / Accepted: 5 April 1997  相似文献   

19.
Aukema BH  Clayton MK  Raffa KF 《Oecologia》2004,139(3):418-426
Multiple predator species feeding on a common prey can lead to higher or lower predation than would be expected by simply combining their individual effects. Such emergent multiple predator effects may be especially prevalent if predators share feeding habitat. Despite the prevalence of endophagous insects, no studies have examined how multiple predators sharing an endophytic habitat affect prey or predator reproduction. We investigated density-dependent predation of Thanasimus dubius (Coleoptera: Cleridae) and Platysoma cylindrica (Coleoptera: Histeridae) on a bark beetle prey, Ips pini (Coleoptera: Scolytidae), in a laboratory assay. I. pini utilize aggregation pheromones to group-colonize and reproduce within the stems of conifers. T. dubius and P. cylindrica exploit these aggregation pheromones to arrive simultaneously with the herbivore. Adult T. dubius prey exophytically, while P. cylindrica adults enter and prey within the bark beetle galleries. Larvae of both predators prey endophytically. We used a multiple regression analysis, which avoids confounding predator composition with density, to examine the effects of varying predator densities alone and in combination on herbivore establishment, herbivore reproduction, and predator reproduction. Predators reduced colonization success by both sexes, and decreased I. pini reproduction on a per male and per female basis. The combined effects of these predators did not enhance or reduce prey establishment or reproduction in unexpected manners, and these predators were entirely substitutable. The herbivores net replacement rate was never reduced significantly below one at prey and predator densities emulating field conditions. Similar numbers of each predator species emerged from the logs, but predator reproduction suffered from high intraspecific interference. The net replacement rate of P. cylindrica was not affected by conspecifics or T. dubius. In contrast, the net replacement rate of T. dubius decreased with the presence of conspecifics or P. cylindrica. Combinations of both predators led to an emergent effect, a slightly increased net replacement rate of T. dubius. This may have been due to predation by larval T. dubius on pupal P. cylindrica, as P. cylindrica develops more rapidly than T. dubius within this shared habitat.  相似文献   

20.
An experimental arrangement is described which allows studies of the temporal performance of enzyme reactions (also reactions of complexes of enzyme chains) under conditions of open systems. The various steady-state properties of such open systems can be recognized by measuring their input and output [1,2]. The various levels of flowing equilibria are perturbed by applying molecular modulators to the system, and the data obtained are compared to those found in closed systems. In order to prove the accuracy of the experimental configuration, the determination of Km in a one-substrate reaction is carried out in the open system, using only one concentration of substrate at various flow rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号