首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional spreads of synaptonemal complexes (SCs) from the lower vascular plant Psilotum nudum were examined after staining with uranyl acetate-lead citrate (UP). Staining with UP allows visualization of lateral elements/axial cores (ACs), central elements, kinetochores, and nodules. Numerous darkly stained nodules were associated with forming SCs. In addition to nodules found on the central element of SC segments, other nodules were found at points of convergence between two adjacent ACs. Of these latter nodules, some were obviously associated with a fiber that connected adjacent ACs. No central element material was visible between the ACs, and the nodule complex appeared to be the only structure holding the ACs together. Although the function(s) of nodules during zygotene is unknown, the presence of a nodule-fiber complex that connects adjacent ACs before central element formation suggests that at least some of the nodules may be involved in synaptic initiation.  相似文献   

2.
Schmekel K 《Chromosoma》2000,109(1-2):110-116
Several gene products involved in meiotic chromosome pairing and recombination in yeast have been identified in recent years. Two nuclear structures play key roles in the meiotic processes: the synaptonemal complex (SC), which is essential for the pairing of the chromosomes, and the recombination nodules (RNs), which mark the sites of recombination. Good morphological representation of the yeast SC and RNs is needed in order to show structural changes caused by specific mutations in protein-coding genes and for fine localization of proteins using immunoelectron microscopy (immuno-EM). This paper presents a newly developed preparation method for EM and immuno-EM that allows analysis of fine structural details and localization of proteins in the SC and RNs in yeast. Structural components of the SC are clearly seen and appear strikingly similar to those in the SC in other organisms. Antibodies against the SC protein Zip1, a transverse filament protein, label the central region of the SC strongly and specifically as expected. The improved method will be an important tool in high-resolution determination of the location of proteins in the meiotic yeast nucleus. Received: 9 March 1999; in revised form: 1 September 1999 / Accepted: 22 September 1999  相似文献   

3.
The behavior of meiotic chromosomes differs in several respects from that of their mitotic counterparts, resulting in the generation of genetically distinct haploid cells. This has been attributed in part to a meiosis-specific chromatin-associated protein structure, the synaptonemal complex. This complex consist of two parallel axial elements, each one associated with a pair of sister chromatids, and a transverse filament located between the synapsed homologous chromosomes. Recently, a different protein structure, the cohesin complex, was shown to be associated with meiotic chromosomes and to be required for chromosome segregation. To explore the functions of the two different protein structures, the synaptonemal complex and the cohesin complex, in mammalian male meiotic cells, we have analyzed how absence of the axial element affects early meiotic chromosome behavior. We find that the synaptonemal complex protein 3 (SCP3) is a main determinant of axial-element assembly and is required for attachment of this structure to meiotic chromosomes, whereas SCP2 helps shape the in vivo structure of the axial element. We also show that formation of a cohesin-containing chromosomal core in meiotic nuclei does not require SCP3 or SCP2. Our results also suggest that the cohesin core recruits recombination proteins and promotes synapsis between homologous chromosomes in the absence of an axial element. A model for early meiotic chromosome pairing and synapsis is proposed.  相似文献   

4.
S M Stack  D Roelofs 《Génome》1996,39(4):770-783
Allium porrum L. (cultivated leek) (2n = 4x = 32) is a fertile tetraploid that forms bivalents with pericentric chiasmata at metaphase I. To investigate the basis of this unusual behavior for a tetraploid, we describe the karyotype, axial cores, synaptonemal complexes (SCs), and meiotic nodules of A. porrum. The karyotype appears to be autotetraploid. This conclusion is also supported by presynaptic alignment of axial cores in groups of four and partner trades between pairs of SCs. Numerous early nodules are distributed all along axial cores and SCs during zygonema, but they are lost by late zygonema - early pachynema. Late (recombination) nodules (RNs) are present on SCs near kinetochores throughout the remainder of pachynema. This pattern of RNs corresponds to the pattern of pericentric chiasmata. Pachytene quadrivalents usually are resolved into bivalents because partner trades between SC lateral elements rarely occur between RNs on the same segment of SC. Thus, the patterns of crossing-over and partner trades promote balanced disjunction and high fertility in autotetraploid A. porrum. Rare quadrivalents observed at metaphase I must be due to infrequent partner trades between RNs. Polycomplexes, unusual in their number and size, were observed during zygonema. Key words : synaptonemal complex, recombination nodules, localized chiasmata, polycomplex, Allium porrum.  相似文献   

5.
6.
The ultrastructure of the synaptonemal complex (SC) has been studied in spermatocytes of the golden hamster and the albino rat, spread on liquid surfaces and negatively stained with uranyl acetate. The conditions for a reproducible procedure for spreading the SC have been specified. Spreading on water causes large losses of material from the complex. Spreading on 0.45–0.9% NaCl in water results in good preservation of the SC. Ethanol dehydration introduces irreversible changes in the shape of the chromatin fibers and the components of the complex. Digestions with DNase and proteases, extraction with 2M NaCl and fixation in an aqueous solution of formaldehyde permit analysis of the components of the SC. The lateral elements of the SC are formed by three components: 1) the bulk material which is protease sensitive, DNase resistant, insoluble in 2M NaCl and partially soluble in water; 2) the axial attachment regions of the chromatin fiber; and 3) an axial and linear filament, 65 Å wide, which is DNase sensitive. It is suggested that this linear 65 Å filament contains a single linear DNA molecule to which the chromatin fibers are attached. The central element of the SC is made of fibrillar material, most of which is DNase resistant and protease sensitive. Fibrils 25 Å wide cross the central space and merge with the central element. The cross fibrils and the central element are labile in solutions containing less than 0.45% NaCl. — From the present results and previous data on diplotene axes (Solari, 1970), it is concluded that the lateral elements of the SC of hamster and rat spermatocytes are undivided during pachytene. It is suggested that the singleness of the axes in the lateral elements is based on the presence of a single DNA molecule axially located in the lateral elements, and that the chromatin fibers are symmetrically attached to this DNA molecule.  相似文献   

7.
L K Anderson  K D Hooker  S M Stack 《Genetics》2001,159(3):1259-1269
Early recombination nodules (ENs) are protein complexes approximately 100 nm in diameter that are associated with forming synaptonemal complexes (SCs) during leptotene and zygotene of meiosis. Although their functions are not yet clear, ENs may have roles in synapsis and recombination. Here we report on the frequency and distribution of ENs in zygotene SC spreads from six plant species that include one lower vascular plant, two dicots, and three monocots. For each species, the number of ENs per unit length is higher for SC segments than for (asynapsed) axial elements (AEs). In addition, EN number is strongly correlated with SC segment length. There are statistically significant differences in EN frequencies on SCs between species, but these differences are not related to genome size, number of chromosomes, or phylogenetic class. There is no difference in the frequency of ENs per unit length of SC from early to late zygotene. The distribution of distances between adjacent ENs on SC segments is random for all six species, but ENs are found at synaptic forks more often than expected for a random distribution of ENs on SCs. From these observations, we conclude that in plants: (1) some ENs bind to AEs prior to synapsis, (2) most ENs bind to forming SCs at synaptic forks, and (3) ENs do not bind to already formed SCs.  相似文献   

8.
During meiosis, the homologous chromosomes pair and recombine. An evolutionarily conserved protein structure, the synaptonemal complex (SC), is located along the paired meiotic chromosomes. We have studied the function of a structural component in the axial/lateral element of the SC, the synaptonemal complex protein 3 (SCP3). A null mutation in the SCP3 gene was generated, and we noted that homozygous mutant males were sterile due to massive apoptotic cell death during meiotic prophase. The SCP3-deficient male mice failed to form axial/lateral elements and SCs, and the chromosomes in the mutant spermatocytes did not synapse. While the absence of SCP3 affected the nuclear distribution of DNA repair and recombination proteins (Rad51 and RPA), as well as synaptonemal complex protein 1 (SCP1), a residual chromatin organization remained in the mutant meiotic cells.  相似文献   

9.
The synaptonemal complex (SC) is the key nuclear element formed in meiotic prophase I to join 2 homologous chromosomes at the pachytene bivalent. It is a highly conserved structure that is universally present in eukaryotes. The SC is presented as a tripartite protein structure, which consists of 2 lateral elements and a central region. In insects, the central region is particularly distinct and highly ordered. This made it possible to describe the fine structure of the central region and propose a model of its architecture. Chromatid DNA is arranged in chromatin loops extending radially from the SC. The loops appear to consist of a basic chromatin fiber with a diameter of 20–30 nm. In many insect species, synaptonemal polycomplexes occur in postpachytene cells. They represent one of the possible ways of SC degradation. Another process, which occurs beyond pachytene, is the formation of proteinaceous chromatid axis, the silver-stained chromatid core. Based on results in insect models, the chromatid cores have been related to the structure and formation of the SC. Research on insect models significantly contributed to understanding individual steps of the SC formation and temporal sequence of chromosome pairing. These include the formation of lateral elements of the SC, pairing initiation, interlocking of chromosomes, and synapsis of homologous chromosomes. Attention is also given to non-homologous pairing, including synaptic adjustment, correction of pairing, and pairing of sex chromosomes. In the next section, chiasmatic and achiasmatic modes of meiosis are compared with respect to the SC formation. In the chiasmatic mode, the SCs display recombination nodules that are believed to mediate the process of recombination. These nodules were discovered in insects, and indirect evidence for their role comes from insects. Two different examples of achiasmatic meiosis, occurring in the heterogametic sex of several insect orders, are given: one involves the SC formation, whereas in the other, SCs are absent. Finally, the potential of SC karyotyping for analysis of the insect genome is discussed.  相似文献   

10.
小鼠精母细胞联会复合体RNA组分的电镜研究   总被引:1,自引:1,他引:0  
邢苗  景德璋 《遗传学报》1991,18(2):115-119
本文运用常规染色和Bernhard染色方法对切片标本中小鼠粗线期精母细胞联会复合体(SC)的超微结构和电镜细胞化学特点进行了研究。经常规染色后,可见SC由侧生组分(LE)、中央组分(CE)和L-C纤维组成;SC宽约210nm,LE宽约60nm,中央间隔区宽约90nm。在Bernhard染色标本中,SC的LE、CE和L-C纤维着色较深,说明其中含有RNA;SC各结构组分的宽度和形态特点与常规染色标本中的基本一致。本文讨论了SC中存在有RNA等问题。  相似文献   

11.
Pairing of homologous chromosomes results in the formation of 34 synaptonemal complexes (SC) at pachytene, corresponding to the 34 bivalents at metaphase I. No multivalent associations were observed and pairing occurs two-by-two. The modified SC, which lacks a central element, does not affect the pairing process. Only one end of the SC is attached to the nuclear envelope, although either end can attach. Total SC length and the number of recombination nodules in the tetraploid were about 1.5 times greater than in the diploid.  相似文献   

12.
The distribution of DNA in synaptonemal complexes of rat and mouse spermatocytes, and of chick oocytes was investigated by immunogold electron microscopy. Except for a few specific sites, DNA was not immunolocalized in the space between lateral elements of the complex. Some labeled fibrils connecting the lateral elements with the central element were observed associated with recombination nodules or near them. However, other labeled fibrils in the space between lateral elements did not appear to present any relationship to recombination nodules. The immunocytochemical approaches used here confirmed the presence of significant amounts of DNA in the lateral elements as previously indicated by preferential DNA staining methods. Furthermore, our findings support the view that recombination nodules are the site of chiasma formation.  相似文献   

13.
Benjamin C. Lu 《Chromosoma》1993,102(7):464-472
A protocol was developed to spread the synaptonemal complex (SC) of the fungus Neurospora crassa. It involves direct mechanical breakage of meiotic cells before spreading. This technique makes it possible to examine the SC of the same nucleus with both light and electron microscopy. This protocol is potentially applicable for other Pyrenomycetes. The SCs were examined at zygotene, pachytene and diplotene. The central elements and the recombination nodules (RN) were well revealed by silver staining. Ten to 13 RNs were counted at pachytene. The total genomic SC length varied with the stage. This whole mount electron microscopy of the SC is particularly useful for studying chromosomal rearrangements.  相似文献   

14.
Summary Two recessive mutants spo76 and spo77, altered in U.V. sensitivity, protoplast regeneration and meiotic recombination were isolated in Sordaria macrospora. The suppression of the spo76 phenotype by spo77 suggests that they are involved in the same pathway. The asynaptic spo77 exhibits a rare synaptonemal complex (SC) with abnormally thick and double lateral elements (LE). In spo76, an early centromere cleavage leads to a meiotic arrest after metaphase I; SC are formed, but their discontinuous LE appear to be either unique or split into two thin LE. It is suggested that the corresponding wild-type functions are required for the sister chromatid cohesiveness.  相似文献   

15.
From data on the molecular organization of transverse filament proteins of the synaptonemal complex (SC)--Zip1 in yeast and SCP1 in mammals--and on the width of the central SC space in these organisms and in Drosophila, the putative molecular structure and size of a transverse filament protein of the SC in Drosophila has been inferred. Using genetic and molecular databases and software from the Internet, we carried out in silico screening for a candidate gene for the Drosophila transverse filament protein. The search in the 250-bp region overlapping the locus of this gene (sections 88E-89B) and containing 78 predicted genes has revealed only one gene, CG17604, whose protein meets all requirements for the transverse filament protein of the SC. It was suggested that gene CG17604 is gene c(3)G. In this case, gene c(3)G must be localized in section 89A7-8 of the cytological map of Drosophila melanogaster.  相似文献   

16.
During meiosis, the paired homologous chromosomes are tightly held together by the synaptonemal complex (SC). This complex consists of two parallel axial/lateral elements (AEs/LEs) and one central element. Here, we observed that PAIR3 localized to the chromosome core during prophase I and associated with both unsynapsed AEs and synapsed LEs. Analyses of the severe pair3 mutant demonstrated that PAIR3 was essential for bouquet formation, homologous pairing and normal recombination, and SC assembly. In addition, we showed that although PAIR3 was not required for the initial recruitment of PAIR2, it was required for the proper association of PAIR2 with chromosomes. Dual immunostaining revealed that PAIR3 highly colocalized with REC8. Moreover, studies using a rec8 mutant indicated that PAIR3 localized to chromosomes in a REC8-dependent manner.  相似文献   

17.
The synaptonemal complexes of three amphimictic (meiotic) strains of Meloidogyne are examined in this study. M. microtyla (n = 19) has a tripartite synaptonemal complex (SC) comprised of two lateral elements and one central region with a distinct central element. The central region of the SC in both M. carolinensis (n = 18) and M. megatyla (n = 18) lack a distinct central element. The evolutionary history is different in the strains since M. microtyla has arisen by a mechanism involving an increase in chromosome number (from an ancestral stock of n = 18) while both M. carolinensis and M. megatyla have maintained the number of chromosomes of the ancestral stock. The structure of the SCs of the latter two strains are identical to the structure of the SC of the meiotic parthenogenetic M. hapla. Thus, the pachytene karyotype of M. carolinensis was reconstructed to establish the pairing pattern and identify any changes that may be related to the different morphology of the SC in an amphimictic stock. Although recombination nodules (RN) have been observed in the parthenogenetic M. hapla, none of the three amphimictic strains had any SC associated structures that resembled a RN.  相似文献   

18.
The fine structure of bivalents from golden hamster and house cricket spermatocytes has been studied with a whole mount surface-spreading method combined with negative staining. The elements of the synaptonemal complex show detail of structure which is absent in other preparative procedures. The transverse filaments found in the central region of the synaptonemal complex from both species are straight and have a similar width, 1 6–1 8 nm These filaments occur mainly in bundles The central element differs in architecture in the two species In hamster bivalents it is formed of longitudinal stretches of filaments 1.6–1 8 nm wide and a small amount of an amorphous material similar to that of the lateral elements In the cricket, the central element contains transverse fibrils which are continuous with the transverse filaments of the central region, and an amorphous material lying mainly along the sides of the central element All of the components of the central region of the synaptonemal complex are resistant to pancreatic DNase. The overlapping ends of the transverse filaments, together with additional protein material, make up the central element The widespread occurrence and close morphological and histochemical interspecies similarities of the transverse filaments indicate that they serve an essential role, probably one concerned with holding synapsed bivalents together via the lateral elements. Restrictions placed by the observations reported here on current models of the synaptonemal complex are discussed.  相似文献   

19.
M I Pigozzi  A J Solari 《Génome》1999,42(2):308-314
Pigeon spermatocytes were processed with a drying-down technique and their synaptonemal complex (SC) complements were analyzed by electron microscopy. The synaptonemal complex karyotype of the macrobivalents shows an excellent correspondence with the mitotic karyotype. The number and distribution of recombination nodules (RNs) were scored in complete nuclei stained with phosphotungstic acid. The average number of RNs per nucleus is 64.7. The number of nodules per bivalent shows a clear linear relationship with SC length in the 10 longest synaptonemal complexes, while the microbivalents usually bear a single RN. The location of RNs has a non-random distribution along the largest synaptonemal complexes, with lower frequencies near kinetochores and higher frequencies toward the telomeres. The ZZ bivalent is the fourth in size and shows free recombination, having on average 3.8 RNs. The mean number of nodules per cell and the mean number of nodules in the largest bivalents show very good agreement with the corresponding number of chiasmata scored in metaphase-I spermatocytes. It is concluded that the recombination nodules provide a good check for reciprocal exchanges in this and other species of birds. Additionally, a new morphology for the recombination nodules is presented, consisting of groups of electron-dense particles measuring 43 nm in diameter.  相似文献   

20.
The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE-specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE-specific proteins, which in turn would promote synapsis between homologous chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号