首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have previously reported that ganglioside GM3 was remarkably increased during monocytoid differentiation of human myelogenous leukemia cell line HL-60 cells and that neolacto series gangliosides (NeuAc-nLc) were enriched during granulocytoid differentiation. In addition, HL-60 was differentiated into monocytic lineage by exogenous GM3 and into granulocytoid by NeuAc-nLc. In the present report, the enzymatic bases of glycosphingolipid biosynthesis in HL-60 during differentiation induced by 12-O-tetradecanoylphorbol-13-acetate and all-trans-retinoic acid were investigated. The following results were of particular interest. (i) Lactosylceramide alpha 2-->3 sialyltransferase (GM3 synthase) was remarkably up-regulated during monocyte differentiation, while the GM3 synthase level did not change in granulocytic differentiation. (ii) By contrast, lactosylceramide beta 1-->3N-acetylglucosaminyltransferase (Lc3Cer synthase) was down-regulated during monocytic differentiation, while the activity of Lc3Cer synthase was found to increase in granulocytic differentiation. (iii) The activities of four downstream glycosyltransferases (for synthesis of NeuAc-nLc) were found to increase or to remain unchanged during monocytic and granulocytic differentiation. These results strongly suggested the following. The dramatic GM3 increase and the decrease of NeuAc-nLc during monocytic differentiation are the consequences of the up-regulation of GM3 synthase and the down-regulation of Lc3Cer synthase, although the downstream enzymes are ready to catalyze their enzyme reactions. The notable increase of NeuAc-nLc and the relative decrease of GM3 during granulocytic differentiation are the results of the unchanged level of GM3 synthase and the up-regulation of Lc3Cer synthase together with the activation of the downstream glycosyltransferases. These results suggest that these two key upstream glycosyltransferases, GM3 synthase and Lc3Cer synthase, play critical roles in regulating the glycosphingolipid biosynthesis in HL-60 cells during differentiation. This switching mechanism of these two glycosyltransferases, together with our previous findings, might be one of the most important parts of the determining system of differentiation direction in human myeloid cells into monocytic or granulocytic lineages.  相似文献   

2.
The enzymatic basis for ganglioside regulation during differentiation of NG108-15 mouse neuroblastoma x rat glioma hybrid cells was studied. This cell line contains four gangliosides that lie along the same biosynthetic pathway: GM3, GM2, GM1, and GD1a. Chemically induced neuronal differentiation of NG108-15 cells led to an 80% drop in the steady-state level of their major ganglioside, GM3, a sixfold increase in the level of a minor ganglioside, GM2 (which became the predominant ganglioside of differentiated cells); and relatively little change in the levels of GM1 and GD1a, which lie further along the same biosynthetic pathway. The enzymatic basis for this selective change in ganglioside expression was investigated by measuring the activity of two glycosyltransferases involved in ganglioside biosynthesis. UDP-N-acetylgalactosamine: GM3 N-acetylgalactosaminyltransferase (GM2-synthetase) activity increased fivefold during butyrate-induced differentiation, whereas UDP-galactose: GM2 galactosyltransferase (GM1-synthetase) activity decreased to 10% of its control level. Coordinate regulation of these two glycosyltransferases appears to be primarily responsible for the selective increase of GM2 expression during NG108-15 differentiation.  相似文献   

3.
Using tritiated gangliosides [( 3H]-GM3 and [3H]-GM1), characteristic incorporation of exogenous GM3 to HL-60 cells was demonstrated in association with differentiation induction. [3H]-GM3 was bound 4-5 times more than [3H]-GM1 was. Scatchard analysis revealed high and low affinity patterns of binding to the cells. The concentration of GM3 that caused growth inhibition and cell differentiation corresponded well to that which showed the bi-phasic binding pattern. It was strongly suggested that GM3, which induces monocytic differentiation, was characteristically bound and incorporated to the cells around the concentration which caused growth inhibition and cell differentiation.  相似文献   

4.
GM3 ganglioside, added exogenously to a promyelocytic leukemia cell line (HL-60 cells) in serum-free synthetic medium, induced differentiation into macrophage-like cells. Macrophagic morphology and function of differentiation-induced cells were determined by cell growth behavior, May-GriJnwald-Giemsa staining, activities of nonspecific esterase, phagocytosis and nitroblue tetrazolium (NBT) reduction. GM3 ganglioside may play a role in triggering differentiation of HL-60 cells into macrophage-like cells.  相似文献   

5.
6.
Gangliosides are ubiquitous membrane components in mammalian cells and are suggested to play important roles in various cell functions, such as cell-cell recognition, differentiation and transmembrane signalling. Ovaries have been shown to contain GM3 as a major ganglioside. To study GM3 distribution during gonadotropin stimulation in the hypophysectomized rat ovary, ovarian sections and cultured granulosa cells were stained with specific monoclonal antibody against GM3. Interstitial cells of follicles of immature hypophysectomized rat ovary expressed ganglioside GM3. Theca cells of early antral follicles but not primary follicles expressed GM3. No granulosa cells of these follicles expressed GM3. When a surge dose of FSH/LH was injected, Graafian follicles were formed and GM3 expression was detected in granulosa cells of these follicles. After ovulation, cumulus cells kept expressing GM3 in the ampulla region of ovulated oviduct. The follicles did not show GM3 expression in their granulosa cells after an ovulatory dose of FSH/LH. At 48 h after in vitro culture with FSH/LH of granulosa cells from preantral follicles, GM3 was expressed to a detectable extent on the outer part of the granulosa layer. Finally, at 72 h after culture, all granulosa cells became positive to anti-GM3 antibody. These data suggest that the expression of ganglioside GM3 in the hypophysectomized rat ovary is spatiotemporally regulated by FSH/LH during follicular development and ovulation.  相似文献   

7.
The Rcho-1 cell line, originally established from a rat choriocarcinoma, shows differentiation into placental trophoblastic giant cell-like cells and has been used to study the mechanism of placental function control. In the present study, we analysed the ganglioside composition of Rcho-1 cells by HPTLC orcinol/H2SO4, TLC/immunostaining and immunohistochemistry. Rcho-1 cells expressed GM3 and GD3 as the major gangliosides and CTH as major neutral glycolipid when they were cultured in growth medium (20% FCS) or transplanted beneath the kidney capsule. The expression of these gangliosides was strong in the undifferentiated small cells, whereas the completely differentiated giant cells showed poor staining with antibodies against the gangliosides. Under culture conditions to induce cell differentiation using horse serum (1–20% HS), the expression of GD3 was suppressed and re-expressed when the medium was changed to growth medium, suggesting that a change of ganglioside components may trigger and define the direction of terminal differentiation. Thus the composition of glycolipids is conserved in Rcho-1 cells and is similar to that of the rat placenta, where GM3 is dominant in mid-pregnancy and decreased in late pregnancy, whereas GD3 is low in mid-pregnancy and increased in late pregnancy.  相似文献   

8.
Gangliosides are sialic acid-conjugated glycosphingolipids that are believed to regulate cell differentiation as well as the signals of several signal molecules, including epidermal growth factor receptors (EGFR). These compounds are localized in a glycosphingolipid-enriched microdomain on the cell surface and regulated by the glycosphingolipid composition. However, the role that gangliosides play in osteoblastogenesis is not yet clearly understood, therefore, in this study, the relationship between gangliosides and EGFR activation was investigated during osteoblast differentiation in human mesenchymal stem cells (hMSCs). The results of high-performance thin-layer chromatography (HPTLC) showed that ganglioside GM3 expression was decreased, whereas ganglioside GD1a expression was increased during the differentiation of hMSCs into osteoblasts. In addition, an increase in the activation of alkaline phosphatase (ALP) was observed in response to treatment with EGF (5 ng/ml) and GD1a (1 μM) (p < 0.05). The activation of ALP was significantly elevated in response to treatment of ganglioside GD1a with EGF when compared to control cells (p < 0.01). However, treatment with GM3 (1 μM) resulted in decreased ALP activation (p < 0.01), and treatment of hMSCs with a chemical inhibitor of EGFR, AG1478, removed the differential effect of the two gangliosides. Moreover, incubation of the differentiating cells with GD1a enhanced the phosphorylation of EGFR, whereas treatment with GM3 reduced the EGFR phosphorylation. However, AG1478 treatment inhibited the effect of ganglioside GD1a elicitation on EGFR phosphorylation. Taken together, these results indicate that GD1a promotes osteoblast differentiation through the enhancement of EGFR phosphorylation, but that GM3 inhibits osteoblast differentiation through reduced EGFR phosphorylation, suggesting that GM3 and GD1a are essential molecules for regulating osteoblast differentiation in hMSCs.  相似文献   

9.
We previously reported that the synthesis of NeuAc(alpha 2-3)Gal(beta 1-4)GlcCer (GM3) ganglioside was preferentially enhanced during the differentiation of HL-60 cells into a monocyte/macrophage lineage induced by 12-O-tetradecanoylphorbol-13-O-acetate (TPA). Since exogenously added GM3 ganglioside was shown to be able to induce the differentiation of HL-60 cells into the monocyte/macrophage lineage in a synthetic medium, the functional role of the GM3 ganglioside increase during the differentiation of HL-60 cells has become the subject of much interest. In the present study, we investigated the activity of CMP-NeuAc:lactosylceramide sialyltransferase, which catalyzes the synthesis of GM3 ganglioside from lactosylceramide, in cells undergoing differentiation induced by two different reagents, TPA and 1 alpha,25-dihydroxy-vitamin D3, which induce the differentiation of HL-60 cells into the monocyte/macrophage lineage through different modes of action. We showed that the activation of CMP-NeuAc:lactosylceramide sialyltransferase and the increase in GM3 ganglioside were not related to the differentiated lineage but to the specific action of TPA, i.e. activation of protein kinase C.  相似文献   

10.
Abstract: Prosaposin, the precursor of saposins A, B, C, and D, was recently identified as a neurotrophic factor in vitro as well as in vivo. Its neurotrophic activity has been localized to a linear 12-amino acid sequence located in the NH2-terminal portion of the saposin C domain. In this study, we show the colocalization of prosaposin and ganglioside GM3 on NS20Y cell plasma membrane by scanning confocal microscopy. Also, TLC and western blot analyses showed that GM3 was specifically associated with prosaposin in immunoprecipitates; this binding was Ca2+-independent and not disassociated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The association of prosaposin-GM3 complexes on the cell surface appeared to be functionally important, as determined by differentiation assays. Neurite sprouting, induced by GM3, was inhibited by antibodies raised against a 22-mer peptide, prosaptide 769, containing the neurotrophic sequence of prosaposin. In addition, pertussis toxin inhibited prosaptide-induced neurite outgrowth, as well as prosaptide-enhanced ganglioside concentrations in NS20Y cells, suggesting that prosaposin acted via a G protein-mediated pathway, affecting both ganglioside content and neuronal differentiation. Our findings revealed a direct and right GM3-prosaposin association on NS20Y plasma membranes. We suggest that ganglioside-protein complexes are structural components of the prosaposin receptor involved in cell differentiation.  相似文献   

11.
The effects of exogenously added glycosphingolipids on the differentiation of mouse myeloid leukemia cells (M1-T22) have been studied. Eight gangliosides and ten neutral glycosphingolipids were tested in terms of their induction of phagocytic activities on the leukemia cells. N-Acetyl-neuraminosyllactosylceramide (NAc-GM3) was the most effective glycolipid for inducing the activity. By the addition of 25 micrograms/ml of NAc-GM3, about 70 percent of the cells acquired phagocytic activity within 20 h incubation. GM1a showed about half the activity of the GM3. In the case of the neutral glycosphingolipids, lactosylceramide (CDH) and globotriaosylceramide (CTH) showed significant effects on the induction of phagocytic activity. Preincubation of the cells with the NAc-GM3 enhanced the effect of dexamethasone as a differentiation inducer on M1-T22 cells. When a human promyelocytic leukemia cell line, HL-60, was preincubated with the NAc-GM3 ganglioside, induction of the phagocytic activity, together with inhibition of the cell growth by phorbol ester (TPA), were markedly enhanced. From these observations, the NAc-GM3 ganglioside seems to act as a modulator of differentiation of mouse myeloid leukemia cells and also of HL-60 cells.  相似文献   

12.
The B subunit of cholera toxin, a protein which binds specifically to cell surface ganglioside GM1, has been shown to have a bimodal effect on DNA synthesis in Swiss 3T3 fibroblasts. The B subunit induced cellular proliferation of confluent and quiescent cells while it inhibited the growth of the same cells when they were sparse and rapidly dividing. The amount of cell surface GM1 increased when the cells reached confluency. To examine the hypothesis that the variation in levels of GM1 was responsible for the bimodal effect, we increased GM1 levels in rapidly dividing cells by insertion of exogenous GM1 or by treatment of the cells with neuraminidase to convert polysialogangliosides to GM1. Even after the level of GM1 was increased to levels similar to those found in confluent cells, the B subunit still inhibited, rather than stimulated, their growth. Therefore, this result indicates that the bimodal response to the B subunit is not solely a function of the concentration of cell surface GM1; rather it is the growth stage that determines the fate of the signal transduced by the interaction of the B subunit and ganglioside GM1.  相似文献   

13.
Gangliosides have been described as modulators of growth factor receptors. For example, GM3 addition in cell culture medium inhibits epidermal growth factor (EGF)-stimulated receptor autophosphorylation. Furthermore, depletion of ganglioside by sialidase gene transfection appeared to increase EGF receptor (EGFR) autophosphorylation. These data suggested that changes in GM3 content may result in different responses to EGF. In this study, the ceramide analog d-threo-1-phenyl-2-decannoylamino-3-morpholino-1-propanol ([D]-PDMP), which inhibits UDP-glucose-ceramide glucosyltransferase, and addition of GM3 to the culture medium were used to study the effects of GM3 on the EGFR. Addition of 10 microM [D]-PDMP to A431 cells resulted in significant GM3 depletion. Additionally, EGFR autophosphorylation was increased after EGF stimulation. When exogenous GM3 was added in combination with [D]-PDMP, the enhanced EGFR autophosphorylation was returned to control levels. [D]-PDMP also increased EGF-induced cell proliferation, consistent with its effect on autophosphorylation. Once again, the addition of GM3 in combination with [D]-PDMP reversed these effects. These results indicate that growth factor receptor functions can be modulated by the level of ganglioside expression in cell lines. Addition of GM3 inhibits EGFR activity and decrease of GM3 levels using [D]-PDMP treatment enhances EGFR activity. Modulation of growth factor receptor function may provide an explanation for how transformation-dependent ganglioside changes contribute to the transformed phenotype.  相似文献   

14.
HL-60, a human promyelocytic leukemia cell line, can be differentiated to myeloid lineage by all- trans retinoic acid (ATRA), dimethylsulfoxide (DMSO) and n -butyric acid (n -BA), or to monocytoid(monocytic/macrophagic) lineage by phorbol-12-myristate-13-acetate (PMA) and ganglioside GM(3). The activity alterations of N -acetylglucosaminyltransferase III and V (GnT-III, GnT-V) as well as alpha-1,6-fucosyl-tranferase (alpha1,6 Fuc T) were studied during the differentiation of HL-60 cells by the above-mentioned five inducers using the fluorescence (PA)-labeled glycan-HPLC method for GnT assays and biotin-labeled glycan-LCA affinity chromatography combined with the HRP-avidin colorimetric method for alpha1,6 Fuc T assay. It was observed that after 3 days, all three enzymes decreased in HL-60 cells induced by 1 micromol/l ATRA and 0.6 mmol/l n-BA, while GnT-III and alpha1,6 Fuc T increased, but GnT-V still decreased after induction by 1% DMSO. GnT-V and alpha1,6 Fuc T declined, while GnT-III was elevated after induction by 0.1 micromol/l PMA for 3 days. In contrast, GnT-III increased after the treatment with 50 micromol/l GM(3)for 3 or 6 days, but GnT-V was not appreciably changed and alpha1,6 FucT was elevated after 6 days of GM(3)treatment. It may be concluded that the decrease of GnT-V is the common change in myeloid differentiation and the increase of GnT-III is the general alteration in monocytoid differentiation. The changes in the activities of glycosyltransferases were consistent with the structural changes in surface N -glycans previously found in our laboratory, i.e. that the antennary number of N -glycans decreased during myeloid differentiation by ATRA, and the amount of bisecting GlcNAc in N -glycans increased during monocytoid differentiation by PMA.  相似文献   

15.
Prosaposin has been recently identified as a neurotrophic factor eliciting differentiation in neuronal cultured cells (NS20Y). In this paper we investigate whether prosaposin and its active peptide (prosaptide) may modify the ganglioside pattern in neuroblastoma cells. The analysis by high performance thin layer chromatography did not reveal qualitative changes in the ganglioside pattern of NS20Y cells incubated in the presence of prosaposin, compared to control cells, but it did reveal an increase of the content of all three major resorcinol positive bands (GM3, GM2, GD1a). Cytofluorimetric and immunofluorescence microscopic analysis revealed that the increase of the ganglioside content was at the plasma membrane level. These findings suggest that the neurotrophic activity of prosaposin on NS20Y neuroblastoma cells might be mediated in part by the increase of cell surface gangliosides.  相似文献   

16.
Specific gangliosides GD1a, GT1b and GQ1b isolated from brain have been shown to function as receptors for Sendai virus by conferring susceptibility to infection when they are incorporated into receptor-deficient cells (Markwell, M.A.K., Svennerholm, L. and Paulson, J.C. (1981) Proc. Natl. Acad. Sci. USA 78, 5406-5410). The endogenous gangliosides of three commonly used hosts for Sendai virus: MDBK, HeLa, and MDCK cells were analyzed to determine the amount and type of receptor gangliosides present. In all three cell lines, GM3 was the major ganglioside component. The presence of GM1, GD1a and the more complex homologs of the gangliotetraose series was also established. In cell lines derived from normal tissue, MDBK and MDCK cells, gangliosides contributed 47-65% of the total sialic acid. In HeLa cells, gangliosides contributed substantially less (17% of the total sialic acid). The ganglioside content of each cell line was shown not to be immutable but instead to depend on the state of differentiation, passage number, and surface the cells were grown on. Thus, the ganglioside concentration of undifferentiated MDCK cells was found to be substantially greater than that of MDBK or HeLa cells, but decreased as the MDCK cells underwent differentiation. Changes in culture conditions that were shown to decrease the receptor ganglioside content of the cells resulted in a corresponding decrease in susceptibility to infection. The endogenous oligosialogangliosides present in susceptible host cells were shown to function as receptors for Sendai virus.  相似文献   

17.
In chronic myeloid leukemia K562 cells, differentiation is also blocked because of low levels of ganglioside GM3, derived by the high expression of sialidase Neu3 active on GM3. In this article, we studied the effects of Neu3 silencing (40-70% and 63-93% decrease in protein content and activity, respectively) in these cells. The effects were as follows: (a) gangliosides GM3, GM1, and sialosylnorhexaosylceramide increased markedly; (b) cell growth and [(3)H]thymidine incorporation diminished relevantly; (c) as mRNA, cyclin D2, and Myc were much less expressed, whereas cyclin D1 was expressed more like its inhibitor p21; (d) as mRNA, pro-apoptotic proteins Bax and Bad increased with concurrent decrease and increase in the anti-apoptotic proteins Bcl-2 and Bcl-XL, respectively; (e) the apoptosis inducers etoposide and staurosporine were active on Neu3 silencing cells but not on mock cells; (f) as mRNA, the megakaryocytic markers CD10, CD44, CD41, and CD61 increased similar to the case of mock cells stimulated with PMA; (g) the signaling cascades mediated by PLC-beta2, PKC, RAF, ERK1/2, RSK90, and JNK were largely activated. The induction of a GM3-rich ganglioside pattern in K562 cells by treatment with brefeldin A elicited a phenotype similar to that of Neu3 silencing cells. In conclusion, upon Neu3 silencing, K562 cells show a decrease in proliferation, propensity to undergo apoptosis, and megakaryocytic differentiation.  相似文献   

18.
Glycolipid compositions of three mouse myeloid leukemia cell clones, two that are sensitive to differentiation inducers (M1-T22 and M1-S1) and one that is differentiation-resistant (M1-R1), have been compared. The T22 and S1 clones contained glucosylceramide (GlcCer), lactosylceramide (LacCer) and gangliotriaosylceramide (Gg3Cer) as the major neutral glycolipids. The differentiation resistant clone, R1, was characterized by the appearance of globotriaosylceramide (Gb3Cer) and a decrease of Gg3Cer. There was a distinct difference in the ganglioside profile between the differentiation-inducible and -resistant clones: T22 and S1 cells contained no detectable amounts of ganglioside, whereas six different gangliosides were detected in the R1 clone. These gangliosides were isolated and identified as GM3, GM2, GM1a, GD1a, GM1b, and a unique disialoganglioside, GD1 alpha, having the following structure: (formula; see text) Based on these comparative studies, the relationship between the glycolipid composition and the differentiation potential of leukemia cells is discussed.  相似文献   

19.
Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.  相似文献   

20.
Kwak DH  Lee S  Kim SJ  Ahn SH  Song JH  Choo YK  Choi BK  Jung KY 《Life sciences》2005,77(20):2540-2551
Abrupt proliferation of glomerular mesangial cells (GMCs) is a common feature in the early stage of diabetic glomerulopathy, and ganglioside GM3 (NeuAcalpha3Galbeta4Glcbeta1Cer) is thought to regulate the proliferation of many cell types. Recently, we have reported ganglioside GM3 as a modulator of glomerular hypertrophy in streptozotocin-induced diabetic rats []. This study examined whether modulation of cellular ganglioside GM3 could regulate the high glucose- and transforming growth factor-beta1 (TGF-beta1)-induced proliferation of GMCs. To pharmacologically modulate the cellular ganglioside GM3, GMCs originated from rat kidneys were cultured with exogenous ganglioside GM3 or d-threo-PDMP, an inhibitor of ganglioside synthesis, in the RPMI 1640 media containing normal (5.6 mM, NG) or high (25 mM, HG) glucose. HG, TGF-beta1 (10 ng/ml) and d-threo-PDMP (20 microM) significantly stimulated the mesangial cell proliferation, whereas these increments were remarkable attenuated by exogenous ganglioside mixture (0.1-0.2 mg/ml) or GM3 (20-100 microM) in a dose-dependent manner. The mesangial cell proliferation caused by HG, TGF-beta1 and d-threo-PDMP was closely correlated with decreases in both cellular sialic acid contents and ganglioside GM3 synthase activity. Based upon the mobility on high-performance thin-layer chromatography (HPTLC), GMCs showed a complex pattern of ganglioside expression that consisted, at least, of five different components of gangliosides, mainly ganglioside GM3. HG, TGF-beta1 and d-threo-PDMP induced a significant reduction of ganglioside expression with apparent changes in the composition of ganglioside GM3, and semi-quantitative analysis by HPTLC showed that ganglioside GM3 expression reduced to about 35-54% of control. These results provide a pathophysiological link between mesangial cell proliferation and ganglioside GM3 expression, indicating that exogenously added ganglioside GM3 inhibits the high-ambient glucose- and TGF-beta1-induced proliferation of cultured GMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号