首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The effect of external potassium (K) and cesium (Cs) on the inwardly rectifying K channel ROMK2 (K(ir)1.1b) was studied in Xenopus oocytes. Elevating external K from 1 to 10 mM increased whole-cell outward conductance by a factor of 3.4 +/- 0.4 in 15 min and by a factor of 5.7 +/- 0.9 in 30 min (n = 22). Replacing external Na by Cs blocked inward conductance but increased whole-cell conductance by a factor of 4.5 +/- 0.5 over a period of 40 min (n = 15). In addition to this slow increase in conductance, there was also a small, rapid increase in conductance that occurred as soon as ROMK was exposed to external cesium or 10 mM K. This rapid increase could be explained by the observed increase in ROMK single-channel conductance from 6.4 +/- 0.8 pS to 11.1 +/- 0.8 pS (10 mM K, n = 8) or 11.7 +/- 1.2 pS (Cs, n = 8). There was no effect of either 10 mM K or cesium on the high open probability (P(o) = 0.97 +/- 0.01; n = 12) of ROMK outward currents. In patch-clamp recordings, the number of active channels increased when the K concentration at the outside surface was raised from 1 to 50 mM K. In cell-attached patches, exposure to 50 mM external K produced one or more additional channels in 9/16 patches. No change in channel number was observed in patches continuously exposed to 50 mM external K. Hence, the slow increase in whole-cell conductance is interpreted as activation of pre-existing ROMK channels that had been inactivated by low external K. This type of time-dependent channel activation was not seen with IRK1 (K(ir)2.1) or in ROMK2 mutants in which any one of 6 residues, F129, Q133, E132, V121, L117, or K61, were replaced by their respective IRK1 homologs. These results are consistent with a model in which ROMK can exist in either an activated mode or an inactivated mode. Within the activated mode, individual channels undergo rapid transitions between open and closed states. High (10 mM) external K or Cs stabilizes the activated mode, and low external K stabilizes the inactivated mode. Mutation of a pH-sensing site (ROMK2-K61) prevents transitions from activated to inactivated modes. This is consistent with a direct effect of external K or Cs on the gating of ROMK by internal pH.  相似文献   

2.
The open-channel conductance properties of a voltage-gated channel from sarcoplasmic reticulum were studied in planar phospholipid membranes. The channel is ideally selective for K+ over Cl- and for K+ over Ca++. In symmetrical 1 M solutions, the single-channel conductance (in pmho) falls in the order: K+ (214) > NH4+ (157) > Rb+ (125) > Na+ (72) > La+ (8.1) > Cs+ (< 3). In neutral bilayers, the channel conductance saturates with ion activity according to a rectangular hyperbolic relation, with half-saturation activities of 54 mM for K+ and 34 mM for Na+. Under symmetrical salt conditions, the K+:Na+ channel conductance ratio increases with salt activity, but the permeability ratio, measured by single-channel bi-ionic potentials, is constant between 20 mM and 2.5 M salt; the permeability ratio is equal to the conductance ratio in the limit of low-salt concentration. The channel conductance varies < 5% in the voltage range -100 to +70 mV. The maximum conductance varies K+ and Na+ is only weakly temperature dependent (delta H++ = 4.6 and 5.3 kcal/mol, respectively), but that of Li+ varies strongly with temperature (delta H++ = 13 kcal/mol). The channel's K+ conductance is blocked asymmetrically by Cs+, and this block is competitive with K+. The results are consistent with an Eyring-type barriers as it permeates the channel. The data conform to Lüger's (1973. Biochem. Biophys. Acta. 311:423-441) predictions for a "pure" single-ion channel.  相似文献   

3.
The single-channel properties for monovalent and divalent cations of a voltage-independent cation channel from Tetrahymena cilia were studied in planar lipid bilayers. The single-channel conductance reached a maximum value as the K+ concentration was increased in symmetrical solutions of K+. The concentration dependence of the conductance was approximated to a simple saturation curve (a single-ion channel model) with an apparent Michaelis constant of 16.3 mM and a maximum conductance of 354 pS. Divalent cations (Ca2+, Ba2+, Sr2+, and Mg2+) also permeated this channel. The sequence of permeability determined by zero current potentials at high ionic concentrations was Ba2+ greater than or equal to K+ greater than or equal to Sr2+ greater than Mg2+ greater than Ca2+. Single-channel conductances for Ca2+ were nearly constant (13.9 pS-20.5 pS) in the concentrations between 0.5 mM and 50 mM Ca-gluconate. In the experiments with mixed solutions of K+ and Ca2+, a maximum conductance of Ca2+ (gamma Camax) and an apparent Michaelis constant of Ca2+ (K Cam) were obtained by assuming a simple competitive relation between the cations. Gamma Camax and K Cam were 14.0 pS and 0.160 mM, respectively. Single-channel conductances in mixed solutions were well-fitted to this competitive model supporting that this cation channel behaves as a single-ion channel. This channel had relatively high-affinity Ca2+-binding sites.  相似文献   

4.
The arginine at position 148 is highly conserved in the inward rectifier K+ channel family. Increases of external pH decrease the single-channel conductance in mutant R148H of the Kir2.1 channel (arginine is mutated into histidine) but not in the wild type channel. Moreover, in 100 mM external K+, varying external pH induced biphasic changes of open channel noise, which peaks at around pH 7.4 in the R148H mutant but not in the wild type channel. The maximum single-channel conductances are higher in the wild type channel and R148H mutant at pH 6.0 than those in the R148H mutant at pH 7.4. However, the maximal conductance is achieved with much lower external [K+] for the latter. Interestingly, the single-channel conductances and open channel noise of the wild type channel at pH 6. 0 and the R148H mutant at pH 6.0 and 7.4 become the same in [K+] = 10 mM. These results indicate that the residue at position 148 is accessible to the external H+ and probably is involved in the formation of two K+ binding sites in the external pore mouth. Effective repulsion between permeating K+ ions in this area requires a positive charge at position 148, and such K+-K+ interaction is the essential mechanism underlying high K+ conduction rate through the Kir2.1 channel pore.  相似文献   

5.
We have studied the effects of membrane surface charge on Na+ ion permeation and Ca2+ block in single, batrachotoxin-activated Na channels from rat brain, incorporated into planar lipid bilayers. In phospholipid membranes with no net charge (phosphatidylethanolamine, PE), at low divalent cation concentrations (approximately 100 microM Mg2+), the single channel current-voltage relation was linear and the single channel conductance saturated with increasing [Na+] and ionic strength, reaching a maximum (gamma max) of 31.8 pS, with an apparent dissociation constant (K0.5) of 40.5 mM. The data could be approximated by a rectangular hyperbola. In negatively charged bilayers (70% phosphatidylserine, PS; 30% PE) slightly larger conductances were observed at each concentration, but the hyperbolic form of the conductance-concentration relation was retained (gamma max = 32.9 pS and K0.5 = 31.5 mM) without any preferential increase in conductance at lower ionic strengths. Symmetrical application of Ca2+ caused a voltage-dependent block of the single channel current, with the block being greater at negative potentials. For any given voltage and [Na+] this block was identical in neutral and negatively charged membranes. These observations suggest that both the conduction pathway and the site(s) of Ca2+ block of the rat brain Na channel protein are electrostatically isolated from the negatively charged headgroups on the membrane lipids.  相似文献   

6.
G Eisenman  R Latorre    C Miller 《Biophysical journal》1986,50(6):1025-1034
Open-channel ion permeation properties were investigated for Ca++-activated K+ (CaK) channels in solutions of K+ and its analogues T1+, Rb+, and NH4+. Single CaK channels were inserted into planar lipid bilayers composed of neutral phospholipids, and open-channel current-voltage (I-V) relations were measured in symmetrical and asymmetrical solutions of each of these individual ions. For all concentrations studied, the zero-voltage conductance falls in the sequence K+ greater than T1+ greater than NH4+ greater than Rb+. The shape of the I-V curve in symmetrical solutions of a single permeant ion is non-ohmic and is species-dependent. The I-V shape is sublinear for K+ and T1+ and superlinear for Rb+ and NH4+. As judged by reversal potentials under bi-ionic conditions with K+ on one side of the bilayer and the test cation on the other, the permeability sequence is T1+ greater than K+ greater than Rb+ greater than NH4+ at 300 mM, which differs from the conductance sequence. Symmetrical mixtures of K+ or NH4+ with Rb+ show a striking anomalous mole fraction behavior, i.e., a minimum in single-channel conductance when the composition of a two-ion mixture is varied at constant total ion concentration. This result is incompatible with present models that consider the CaK channel a single-ion pore. In total, the results show that the CaK channel finely discriminates among K+-like ions, exhibiting different energy profiles among these species, and that several such ions can reside simultaneously within the conduction pathway.  相似文献   

7.
The conduction properties of the alkaline earth divalent cations were determined in the purified sheep cardiac sarcoplasmic reticulum ryanodine receptor channel after reconstitution into planar phospholipid bilayers. Under bi-ionic conditions there was little difference in permeability among Ba2+, Ca2+, Sr2+, and Mg2+. However, there was a significant difference between the divalent cations and K+, with the divalent cations between 5.8- and 6.7-fold more permeant. Single-channel conductances were determined under symmetrical ionic conditions with 210 mM Ba2+ and Sr2+ and from the single-channel current-voltage relationship under bi-ionic conditions with 210 mM divalent cations and 210 mM K+. Single-channel conductance ranged from 202 pS for Ba2+ to 89 pS for Mg2+ and fell in the sequence Ba2+ greater than Sr2+ greater than Ca2+ greater than Mg2+. Near-maximal single-channel conductance is observed at concentrations as low as 2 mM Ba2+. Single-channel conductance and current measurements in mixtures of Ba(2+)-Mg2+ and Ba(2+)-Ca2+ reveal no anomalous behavior as the mole fraction of the ions is varied. The Ca(2+)-K+ reversal potential determined under bi-ionic conditions was independent of the absolute value of the ion concentrations. The data are compatible with the ryanodine receptor channel acting as a high conductance channel displaying moderate discrimination between divalent and monovalent cations. The channel behaves as though ion translocation occurs in single file with at most one ion able to occupy the conduction pathway at a time.  相似文献   

8.
Critical loci for ion conduction in inward rectifier K+ channels are only now being discovered. The C-terminal region of IRK1 plays a crucial role in Mg2+i blockade and single-channel K+ conductance. A negatively charged aspartate in the putative second transmembrane domain (position 172) is essential for time-dependent block by the cytoplasmic polyamines spermine and spermidine. We have now localized the C-terminus effect in IRK1 to a single, negatively charged residue (E224). Mutation of E224 to G, Q and S drastically reduced rectification. Furthermore, the IRK1 E224G mutation decreased block by Mg2+i and spermidine and, like the E224Q mutation, caused a dramatic reduction in the apparent single-channel K+ conductance. The double mutation IRK1 D172N+ E224G was markedly insensitive to spermidine block, displaying an affinity similar to ROMK1. The results are compatible with a model in which the negatively charged residue at position 224, E224, is a major determinant of pore properties in IRK1. By means of a specific interaction with the negatively charged residue at position 172, D172, E224 contributes to the formation of the binding pocket for Mg2+ and polyamines, a characteristic of strong inward rectifiers.  相似文献   

9.
Previous studies suggested that the cytoplasmic COOH-terminal portions of inward rectifier K channels could contribute significant resistance barriers to ion flow. To explore this question further, we exchanged portions of the COOH termini of ROMK2 (Kir1.1b) and IRK1 (Kir2.1) and measured the resulting single-channel conductances. Replacing the entire COOH terminus of ROMK2 with that of IRK1 decreased the chord conductance at V(m) = -100 mV from 34 to 21 pS. The slope conductance measured between -60 and -140 mV was also reduced from 43 to 31 pS. Analysis of chimeric channels suggested that a region between residues 232 and 275 of ROMK2 contributes to this effect. Within this region, the point mutant ROMK2 N240R, in which a single amino acid was exchanged for the corresponding residue of IRK1, reduced the slope conductance to 30 pS and the chord conductance to 22 pS, mimicking the effects of replacing the entire COOH terminus. This mutant had gating and rectification properties indistinguishable from those of the wild-type, suggesting that the structure of the protein was not grossly altered. The N240R mutation did not affect block of the channel by Ba(2+), suggesting that the selectivity filter was not strongly affected by the mutation, nor did it change the sensitivity to intracellular pH. To test whether the decrease in conductance was independent of the selectivity filter we made the same mutation in the background of mutations in the pore region of the channel that increased single-channel conductance. The effects were similar to those predicted for two independent resistors arranged in series. The mutation increased conductance ratio for Tl(+):K(+), accounting for previous observations that the COOH terminus contributed to ion selectivity. Mapping the location onto the crystal structure of the cytoplasmic parts of GIRK1 indicated that position 240 lines the inner wall of this pore and affects the net charge on this surface. This provides a possible structural basis for the observed changes in conductance, and suggests that this element of the channel protein forms a rate-limiting barrier for K(+) transport.  相似文献   

10.
KcsA: it's a potassium channel   总被引:6,自引:0,他引:6       下载免费PDF全文
Ion conduction and selectivity properties of KcsA, a bacterial ion channel of known structure, were studied in a planar lipid bilayer system at the single-channel level. Selectivity sequences for permeant ions were determined by symmetrical solution conductance (K(+) > Rb(+), NH(4)(+), Tl(+) > Cs(+), Na(+), Li(+)) and by reversal potentials under bi-ionic or mixed-ion conditions (Tl(+) > K(+) > Rb(+) > NH(4)(+) > Na(+), Li(+)). Determination of reversal potentials with submillivolt accuracy shows that K(+) is over 150-fold more permeant than Na(+). Variation of conductance with concentration under symmetrical salt conditions is complex, with at least two ion-binding processes revealing themselves: a high affinity process below 20 mM and a low affinity process over the range 100-1,000 mM. These properties are analogous to those seen in many eukaryotic K(+) channels, and they establish KcsA as a faithful structural model for ion permeation in eukaryotic K(+) channels.  相似文献   

11.
The contribution of Ca2(+)-activated and delayed rectifying K+ channels to the voltage-dependent outward current involved in spike repolarization in mouse pancreatic beta-cells (Rorsman, P., and G. Trube. 1986. J. Physiol. 374:531-550) was assessed using patch-clamp techniques. A Ca2(+)-dependent component could be identified by its rapid inactivation and sensitivity to the Ca2+ channel blocker Cd2+. This current showed the same voltage dependence as the voltage-activated (Cd2(+)-sensitive) Ca2+ current and contributed 10-20% to the total beta-cell delayed outward current. The single-channel events underlying the Ca2(+)-activated component were investigated in cell-attached patches. Increase of [Ca2+]i invariably induced a dramatic increase in the open state probability of a Ca2(+)-activated K+ channel. This channel had a single-channel conductance of 70 pS [( K+]o = 5.6 mM). The Ca2(+)-independent outward current (constituting greater than 80% of the total) reflected the activation of an 8 pS [( K+]o = 5.6 mM; [K+]i = 155 mM) K+ channel. This channel was the only type observed to be associated with action potentials in cell-attached patches. It is suggested that in mouse beta-cells spike repolarization results mainly from the opening of the 8-pS delayed rectifying K+ channel.  相似文献   

12.
A single cation-channel from Tetrahymena cilia was incorporated into planar lipid bilayers. This channel was voltage-independent and is permeable to K+ and Ca2+. In the experiments with mixed solutions where the concentrations of K+ and Ca2+ were varied, the single-channel conductance was found to be influenced by the Gibbs-Donnan ratio. The data are explained by assuming that the binding sites of this channel were always occupied by two potassium ions or one calcium ion under the present experimental conditions (5 mM-90 mM K+ and 0.5 mM-35 mM Ca2+) and these bound cations determined the channel conductivity.  相似文献   

13.
Y Oosawa 《Biophysical journal》1989,56(6):1217-1223
The cation-selective channel from Tetrahymena cilia is permeable to both monovalent and divalent cations. The single channel conductance in mixed solutions of K+ and Ca2+ was determined by the Gibbs-Donnan ratio of K+ and Ca2+, and the binding sites of this channel were considered to be always occupied by two potassium ions or by one calcium ion under the experimental conditions: 5-90 mM K+ and 0.5-35 mM Ca2+ (Oosawa and Kasai, 1988). A two-barrier model for the channel was introduced and the values of Michaelis-Menten constants and maximum currents carried by K+ and Ca2+ were calculated using this model. Single channel current amplitudes and reversal potentials were calculated from these values. The calculated single-channel currents were compared with those obtained experimentally. The calculated reversal potentials were compared with the resting potentials of Tetrahymena measured in various concentrations of extracellular K+ and Ca2+. The method of calculation of ionic currents and reversal potentials presented here is helpful for understanding the properties of the channels permeable to both monovalent and divalent cations.  相似文献   

14.
The conductance and selectivity of the Ca-activated K channel in cultured rat muscle was studied. Shifts in the reversal potential of single channel currents when various cations were substituted for Ki+ were used with the Goldman-Hodgkin-Katz equation to calculate relative permeabilities. The selectivity was Tl+ greater than K+ greater than Rb+ greater than NH4+, with permeability ratios of 1.2, 1.0, 0.67, and 0.11. Na+, Li+, and Cs+ were not measurably permeant, with permeabilities less than 0.05 that of K+. Currents with the various ions were typically less than expected on the basis of the permeability ratios, which suggests that the movement of an ion through the channel was not independent of the other ions present. For a fixed activity of Ko+ (77 mM), plots of single channel conductance vs. activity of Ki+ were described by a two-barrier model with a single saturable site. This observation, plus the finding that the permeability ratios of Rb+ and NH+4 to K+ did not change with ion concentration, is consistent with a channel that can contain a maximum of one ion at any time. The empirically determined dissociation constant for the single saturable site was 100 mM, and the maximum calculated conductance for symmetrical solutions of K+ was 640 pS. TEAi+ (tetraethylammonium ion) reduced single channel current amplitude in a voltage-dependent manner. This effect was accounted for by assuming voltage-dependent block by TEA+ (apparent dissociation constant of 60 mM at 0 mV) at a site located 26% of the distance across the membrane potential, starting at the inner side. TEAo+ was much more effective in reducing single channel currents, with an apparent dissociation constant of approximately 0.3 mM.  相似文献   

15.
A novel potassium-selective channel which is active at membrane potentials between -100 mV and +40 mV has been identified in peripheral myelinated axons of Xenopus laevis using the patch-clamp technique. At negative potentials with 105 mM-K on both sides of the membrane, the channel at 1 kHz resolution showed a series of brief openings and closings interrupted by longer closings, resulting in a flickery bursting activity. Measurements with resolution up to 10 kHz revealed a single-channel conductance of 49 pS with 105 mM-K and 17 pS with 2.5 mM-K on the outer side of the membrane. The channel was selective for K ions over Na ions (PNa/PK = 0.033). The probability of being within a burst in outside-out patches varied from patch to patch (> 0.2, but often > 0.9), and was independent of membrane potential. Open-time histograms were satisfactorily described with a single exponential (tau o = 0.09 msec), closed times with the sum of three exponentials (tau c = 0.13, 5.9, and 36.6 msec). Sensitivity to external tetraethylammonium was comparatively low (IC50 = 19.0 mM). External Cs ions reduced the apparent unitary conductance for inward currents at Em = -90 mV (IC50 = 1.1 mM). Ba and, more potently, Zn ions lowered not only the apparent single-channel conductance but also open probability. The local anesthetic bupivacaine with high potency reduced probability of being within a burst (IC50 = 165 nM). The flickering K channel is clearly different from the other five types of K channels identified so far in the same preparation. We suggest that this channel may form the molecular basis of the resting potential in vertebrate myelinated axons.  相似文献   

16.
Single K+ channels were studied using the patch-clamp method. A potential-dependent K+ channel of large conductance (about 100 pS at 100 mM of KCl on both membrane sides) was detected. Some properties of the channel (current-voltage relations, kinetic parameters, etc.) are presented. The channel was found to have about 16 resolvable quantized conductance substates. The data are confirmed by spontaneous channel degradation, i.e., spontaneous splitting of the channel conductance into independent conductance oligomers. Some properties of the conductance oligomers of different order are described. The degree of potential dependency of the conductance oligomer parameters is a function of potential dependency. The data obtained are in agreement with a hypothesis that the channels studied are clusters (aggregates) of elementary channel subunits.  相似文献   

17.
Despite recent progress in physiology of fish ion homeostasis, the mechanism of plasma K+ regulation has remained unclear. Using Mozambique tilapia, a euryhaline teleost, we demonstrated that gill mitochondrion-rich (MR) cells were responsible for K+ excretion, using a newly invented technique that insolubilized and visualized K+ excreted from the gills. For a better understanding of the molecular mechanism of K+ excretion in the gills, cDNA sequences of renal outer medullary K+ channel (ROMK), potassium large conductance Ca(2+)-activated channel, subfamily M (Maxi-K), K(+)-Cl(-) cotransporters (KCC1, KCC2, and KCC4) were identified in tilapia as the candidate molecules that are involved in K+ handling. Among the cloned candidate molecules, only ROMK showed marked upregulation of mRNA levels in response to high external K+ concentration. In addition, immunofluorescence microscopy revealed that ROMK was localized in the apical opening of gill MR cells, and that the immunosignals were most intense in the fish acclimated to the environment with high K+ concentration. To confirm K+ excretion via ROMK, K+ insolubilization-visualization technique was applied again in combination with K+ channel blockers. The K+ precipitation was prevented in the presence of Ba2+, indicating that ROMK has a pivotal role in K+ excretion. The present study is the first to demonstrate that the fish excrete K+ from the gill MR cells, and that ROMK expressed in the apical opening of the MR cells is a main molecular pathway responsible for K+ excretion.  相似文献   

18.
G protein control of potassium channel activity in a mast cell line   总被引:8,自引:1,他引:7       下载免费PDF全文
Using the patch-clamp technique, we studied regulation of potassium channels by G protein activators in the histamine-secreting rat basophilic leukemia (RBL-2H3) cell line. These cells normally express inward rectifier K+ channels, with a macroscopic whole-cell conductance in normal Ringer ranging from 1 to 16 nS/cell. This conductance is stabilized by including ATP or GTP in the pipette solution. Intracellular dialysis with any of three different activators of G proteins (GTP gamma S, GppNHp, or AlF-4) completely inhibited the inward rectifier K+ conductance with a half-time for decline averaging approximately 300 s after "break-in" to achieve whole-cell recording. In addition, with a half-time averaging approximately 200 s, G protein activators induced the appearance of a novel time-independent outwardly rectifying K+ conductance, which reached a maximum of 1-14 nS. The induced K+ channels are distinct from inward rectifier channels, having a smaller single-channel conductance of approximately 8 pS in symmetrical 160 mM K+, and being more sensitive to block by quinidine, but less sensitive to block by Ba2+. The induced K+ channels were also highly permeable to Rb+ but not to Na+ or Cs+. The current was not activated by the second messengers Ca2+, inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, or by cyclic AMP-dependent phosphorylation. Pretreatment of cells with pertussis toxin (0.1 microgram/ml for 12-13 h) prevented this current's induction both by guanine nucleotides and aluminum fluoride, but had no effect on the decrease in inward rectifier conductance. Since GTP gamma S is known to stimulate secretion from patch-clamped rat peritoneal mast cells, it is conceivable that K+ channels become inserted into the plasma membrane from secretory granules. However, total membrane capacitance remained nearly constant during appearance of the K+ channels, suggesting that secretion induced by GTP gamma S was minimal. Furthermore, pertussis toxin had no effect on secretion triggered by antigen, and triggering of secretion before electrical recording failed to induce the outward K+ current. Finally, GTP gamma S activated the K+ channel in excised inside-out patches of membrane. We conclude that two different GTP-binding proteins differentially regulate two subsets of K+ channels, causing the inward rectifier to close and a novel K+ channel to open when activated.  相似文献   

19.
By using single-channel recording techniques, we measured the conductance (gK) of the Ca(2+)-activated Maxi-K+ channel from the embryonic rat brain, and examined its dependence on K+ ions present in equimolar concentrations on both sides of the membrane patch. With ionic strength maintained constant by substitution of N-methyl-D-glucamine for K+, gK has a sigmoidal dependence upon [K+]. This result has been obscured in previous work by variations in ionic strength, which has a marked effect on single-channel conductance, especially in the limit for which this variable approaches zero. The gK versus [K+] relationship is described, theoretically, by a three-barrier, two-binding-site model in which the barrier that an ion must cross to leave the channel is decreased as [K+] is increased.  相似文献   

20.
We report transient expression of a full-length cDNA encoding the Ca2+ release channel of rabbit skeletal muscle sarcoplasmic reticulum (ryanodine receptor) in HEK-293 cells. The single-channel properties of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate-solubilized and sucrose gradient-purified recombinant Ca2+ release channels were investigated by using single-channel recordings in planar lipid bilayers. The recombinant Ca2+ release channel exhibited a K+ conductance of 780 pS when symmetrical 250 mM KCl was used as the conducting ion and a Ca2+ conductance of 116 pS in 50 mM luminal Ca2+. Opening events of the recombinant channels were brief, with an open time constant of approximately 0.22 ms. The recombinant Ca2+ release channel was more permeable to Ca2+ than to K+, with a pCa2+/pK+ ratio of 6.8. The response of the recombinant Ca2+ release channel to various concentrations of Ca2+ was biphasic, with the channel being activated by micromolar Ca2+ and inhibited by millimolar Ca2+. The recombinant channels were activated by ATP and caffeine, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Most recombinant channels were asymmetrically blocked, conducting current unidirectionally from the luminal to the cytoplasmic side of the channel. These data demonstrate that the properties of recombinant Ca2+ release channel expressed in HEK-293 cells are very similar, if not identical, to those of the native channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号