首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
3.
Embryogenesis is a period during which cells are exposed to dynamic changes of various intracellular and extracellular stresses. Oxidative stress response genes are regulated by heterodimers composed of Cap'n'Collar (CNC) and small Maf proteins (small Mafs) that bind to antioxidant response elements (ARE). Whereas CNC factors have been shown to contribute to the expression of ARE-dependent cytoprotective genes during embryogenesis, the specific contribution of small Maf proteins to such gene regulation remains to be fully examined. To delineate the small Maf function in vivo, in this study we examined mice lacking all three small Mafs (MafF, MafG, and MafK). The small Maf triple-knockout mice developed normally until embryonic day 9.5 (E9.5). Thereafter, however, the triple-knockout embryos showed severe growth retardation and liver hypoplasia, and the embryos died around E13.5. ARE-dependent cytoprotective genes were expressed normally in E10.5 triple-knockout embryos, but the expression was significantly reduced in the livers of E13.5 mutant embryos. Importantly, the embryonic lethality could be completely rescued by transgenic expression of exogenous MafG under MafG gene regulatory control. These results thus demonstrate that small Maf proteins are indispensable for embryonic development after E9.5, especially for liver development, but early embryonic development does not require small Mafs.  相似文献   

4.
5.
6.
Deciphering the expression pattern of K+ channel encoding genes during development can help in the understanding of the establishment of cellular excitability and unravel the molecular mechanisms of neuromuscular diseases. We focused our attention on genes belonging to the erg family, which is deeply involved in the control of neuromuscular excitability in Drosophila flies and possibly other organisms. Both in situ hybridisation and RNase Protection Assay experiments were used to study the expression pattern of mouse (m)erg1, m-erg2 and m-erg3 genes during mouse embryo development, to allow the pattern to be compared with their expression in the adult. M-erg1 is first expressed in the heart and in the central nervous system (CNS) of embryonic day 9.5 (E9.5) embryos; the gene appears in ganglia of the peripheral nervous system (PNS) (dorsal root (DRG) and sympathetic (SCG) ganglia, mioenteric plexus), in the neural layer of retina, skeletal muscles, gonads and gut at E13.5. In the adult m-erg1 is expressed in the heart, various structures of the CNS, DRG and retina. M-erg2 is first expressed at E9.5 in the CNS, thereafter (E13.5) in the neural layer of retina, DRG, SCG, and in the atrium. In the adult the gene is present in some restricted areas of the CNS, retina and DRG. M-erg3 displayed an expression pattern partially overlapping that of m-erg1, with a transitory expression in the developing heart as well. A detailed study of the mouse adult brain showed a peculiar expression pattern of the three genes, sometimes overlapping in different encephalic areas.  相似文献   

7.
心外膜的形成是胚胎心脏发育的关键生理过程之一。利用遗传谱系示踪技术示踪观察前体心外膜向心外膜细胞转化过程,具有重要的科学研究价值。本研究拟利用Tbx18+前体/心外膜祖细胞遗传谱系示踪模型,揭示胚胎心外膜的起源及前体心外膜向心外膜转化的过程。利用整胚和切片原位杂交技术揭示,Tbx18 mRNA特异性表达于胚龄(E)9.5 d小鼠胚胎前体心外膜;故Tbx18是前体心外膜的特异性标记基因。利用整胚X-Gal染色,揭示报告基因Lacz在E9.5 d遗传谱系示踪模型鼠胚前体心外膜中大量表达,此时报告基因从前体心外膜逐渐迁移并开始少量表达于心外膜。Lacz在E10~E10.5 d双杂合鼠胚前体心外膜中表达逐渐减少,而在心外膜组织中逐渐增多;在E11.5 d,报告基因在前体心外膜中表达基本消失,而在心外膜组织中大量表达。切片进行X-Gal染色也揭示,报告基因Lacz定位于早期胚胎前体心外膜及心外膜。免疫荧光染色证实,早期胚胎心外膜细胞呈现未分化的祖细胞状态。通过报告基因的表达变化模式揭示,胚胎心外膜的形成经历了启动、转化、完成3个阶段;E9.5~11.5 d左右这个时间段发生的前体心外膜向心外膜转化,可能是心外膜形成的主要来源和形式。  相似文献   

8.
9.
10.
11.
Midkine and pleiotrophin comprise a family of heparin-binding growth factors, and are expressed in overlapping tissues during the mid- to late-gestation periods of mouse development. Their distinct expression during early mouse development, as revealed by in situ hybridization, was reported. Midkine was expressed in the embryonic ectoderm from as early as embryonic day (E5.5). In the neural tube midkine was expressed specifically in the neuroepithelium, that is, in the whole area of the neural tube at E9.5, and in the ventricular zone from E10.5-13.5. At E15.5, when the neuroepithelium disappeared, midkine concomitantly became undetectable. In contrast, pleiotrophin expression started exclusively in the neural plate at E8.5, and in the lateral plate of the neural tube at E9.5. It then became restricted to a dorsal ventricular zone from E11.5-13.5, and finally to the central gray neurons at E15.5. Moreover, pleiotrophin was expressed in the ventral horns. Among placental tissues, midkine was detected in the chorion, the fetal component of the placenta, whereas pleiotrophin was found in the decidua basalis, the maternal component of the placenta. The distinct expression of midkine and pleiotrophin suggests their differential role in early development.  相似文献   

12.
13.
14.
15.
Genomic imprinting is an epigenetic mechanism that causes functional differences between paternal and maternal genomes, and plays an essential role in mammalian development. Stage-specific changes in the DNA methylation patterns of imprinted genes suggest that their imprints are erased some time during the primordial germ cell (PGC) stage, before their gametic patterns are re-established during gametogenesis according to the sex of individuals. To define the exact timing and pattern of the erasure process, we have analyzed parental-origin-specific expression of imprinted genes and DNA methylation patterns of differentially methylated regions (DMRs) in embryos, each derived from a single day 11.5 to day 13.5 PGC by nuclear transfer. Cloned embryos produced from day 12.5 to day 13.5 PGCs showed growth retardation and early embryonic lethality around day 9.5. Imprinted genes lost their parental-origin-specific expression patterns completely and became biallelic or silenced. We confirmed that clones derived from both male and female PGCs gave the same result, demonstrating the existence of a common default state of genomic imprinting to male and female germlines. When we produced clone embryos from day 11.5 PGCs, their development was significantly improved, allowing them to survive until at least the day 11.5 embryonic stage. Interestingly, several intermediate states of genomic imprinting between somatic cell states and the default states were seen in these embryos. Loss of the monoallelic expression of imprinted genes proceeded in a step-wise manner coordinated specifically for each imprinted gene. DNA demethylation of the DMRs of the imprinted genes in exact accordance with the loss of their imprinted monoallelic expression was also observed. Analysis of DNA methylation in day 10.5 to day 12.5 PGCs demonstrated that PGC clones represented the DNA methylation status of donor PGCs well. These findings provide strong evidence that the erasure process of genomic imprinting memory proceeds in the day 10.5 to day 11.5 PGCs, with the timing precisely controlled for each imprinted gene. The nuclear transfer technique enabled us to analyze the imprinting status of each PGC and clearly demonstrated a close relationship between expression and DNA methylation patterns and the ability of imprinted genes to support development.  相似文献   

16.
Pluripotential stem cells derived from migrating primordial germ cells   总被引:9,自引:0,他引:9  
Pluripotent stem cells termed embryonic germ cells (EGCs) have earlier been derived from pre- and post-migrating mouse primordial germ cells (PGCs). We have recently obtained four EGC lines from migrating PGCs of 9.5 days post coitum (dpc) embryos. All lines were male with normal karyotype and showed properties that are similar to previously established EGC lines, including colony morphology, expression of alkaline phosphatase (AP), and expression of SSEA-1 antigen. The developmental potency of two of these lines was tested in vivo. They contributed to a range of tissues in fetal chimeras including heart, lung, kidney, intestine, muscle, brain and skin. We also examined the methylation status of the imprinted genes: Igf2r, p57Kip2, Lit1, H19 and Igf2. Igf2r, p57Kip2 and Lit1 were unmethylated in all analysed EGC lines, whereas H19 and Igf2 showed significant hypo-methylation in the 9.5 dpc EGC-1 line when compared to previously derived 11.5 dpc male EGC lines. This suggests that imprint erasure in the male germ line occurs prior to 9.5 dpc for all imprinted genes examined.  相似文献   

17.
Recent work indicates that thyroid hormone receptor-associated protein 220 (TRAP220), a subunit of the multiprotein TRAP coactivator complex, is essential for embryonic survival. We have generated TRAP220 conditional null mice that are hypomorphic and express the gene at reduced levels. In contrast to TRAP220 null mice, which die at embryonic d 11.5 (E11.5), hypomorphic mice survive until E13.5. The reduced expression in hypomorphs results in hepatic necrosis, defects in hematopoiesis, and hypoplasia of the ventricular myocardium, similar to that observed in TRAP220 null embryos at an earlier stage. The embryonic lethality of null embryos at E11.5 is due to placental insufficiency. Tetraploid aggregation assays partially rescues embryonic development until E13.5, when embryonic loss occurs due to hepatic necrosis coupled with poor myocardial development as observed in hypomorphs. These findings demonstrate that, for normal placental function, there is an absolute requirement for TRAP220 in extraembryonic tissues at E11.5, with an additional requirement in embryonic tissues for hepatic and cardiovascular development thereafter.  相似文献   

18.
Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号