首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Our understanding of visual processing in general, and contour integration in particular, has undergone great change over the last 10 years. There is now an accumulation of psychophysical and neurophysiological evidence that the outputs of cells with conjoint orientation preference and spatial position are integrated in the process of explication of rudimentary contours. Recent neuroanatomical and neurophysiological results suggest that this process takes place at the cortical level V1. The code for contour integration may be a temporal one in that it may only manifest itself in the latter part of the spike train as a result of feedback and lateral interactions. Here we review some of the properties of contour integration from a psychophysical perspective and we speculate on their underlying neurophysiological substrate.  相似文献   

2.
Symmetry is a complex image property that is exploited by a sufficiently wide range of species to indicate that it is detected using simple visual mechanisms. These mechanisms rely on measurements made close to the axis of symmetry. We investigated the size and shape of this integration region (IR) by measuring human detection of spatially band-pass symmetrical patches embedded in noise. Resistance to disruption of symmetry (in the form of random phase noise) improves with increasing patch size, and then asymptotes when the embedded region fills the IR. The size of the IR is shown to vary in inverse proportion to spatial frequency; i.e. symmetry detection exhibits scale invariance. The IR is shown to have rigid dimensions, elongated in the direction of the axis of symmetry, with an aspect ratio of ca. 2:1. These results are consistent with a central role for spatial filtering in symmetry detection.  相似文献   

3.
Many animals use concealing markings to reduce the risk of predation. These include background pattern matching (crypsis), where the coloration matches a random sample of the background and disruptive patterns, whose effectiveness has been hypothesized to lie in breaking up the body into a series of apparently unrelated objects. We have previously established the effectiveness of disruptive coloration against avian predators, using artificial moth-like stimuli with colours designed to match natural backgrounds as perceived by birds. Here, we investigate the mechanism by which disruptive patterns reduce detectability, using a computational vision model of edge detection applied to photographs of our experimental stimuli, calibrated for bird colour vision. We show that, disruptive coloration is effective by exploiting edge detection algorithms that we use to model early visual processing. Thus, 'false' edges are detected within the body rather than at its periphery, so inhibiting successful detection of the animal's body outline.  相似文献   

4.
Li W  Piëch V  Gilbert CD 《Neuron》2006,50(6):951-962
Contour integration is an important intermediate stage of object recognition, in which line segments belonging to an object boundary are perceptually linked and segmented from complex backgrounds. Contextual influences observed in primary visual cortex (V1) suggest the involvement of V1 in contour integration. Here, we provide direct evidence that, in monkeys performing a contour detection task, there was a close correlation between the responses of V1 neurons and the perceptual saliency of contours. Receiver operating characteristic analysis showed that single neuronal responses encode the presence or absence of a contour as reliably as the animal's behavioral responses. We also show that the same visual contours elicited significantly weaker neuronal responses when they were not detected in the detection task, or when they were unattended. Our results demonstrate that contextual interactions in V1 play a pivotal role in contour integration and saliency.  相似文献   

5.
Contour integration in low-level vision is believed to occur based on lateral interaction between neurons with similar orientation tuning. How such interactions could arise in the brain has been an open question. Our model suggests that the interactions can be learned through input-driven self-organization, i.e., through the same mechanism that underlies many other developmental and functional phenomena in the visual cortex. The model also shows how synchronized firing mediated by these lateral connections can represent the percept of a contour, resulting in performance similar to that of human contour integration. The model further demonstrates that contour integration performance can differ in different parts of the visual field, depending on what kinds of input distributions they receive during development. The model thus grounds an important perceptual phenomenon onto detailed neural mechanisms so that various structural and functional properties can be measured and predictions can be made to guide future experiments.  相似文献   

6.
Recent studies of visual detection show a configuration dependent weak improvement of thresholds with the number of targets, which corresponds to a fourth-root power law. We find this result to be inconsistent with probability summation models, and account for it by a model of 'physiological' integration that is based on excitatory lateral interactions in the visual cortex. The model explains several phenomena which are confirmed by the experimental data, such as the absence of spatial and temporal uncertainty effects, temporal summation curves, and facilitation by a pedestal in 2AFC tasks. The summation exponents are dependent on the strength of the lateral interactions, and on the distance and orientation relationship between the elements.  相似文献   

7.
Human observers are able to locate contours that are defined solely on the basis of long-range, orientation-domain correlations. The integrity of the mechanisms responsible for second-order contour detection is disrupted by amblyopia (Kovacs et al., 1996; Hess et al., 1997) and it is therefore of interest to develop methods for assessing pediatric patients undergoing treatment for amblyopia. In this study, we have determined the inter-observer and test-retest reliability of a card-based test of second-order contour integration. The magnitude of practice effects was also assessed in both adult and pediatric patient groups. Contour detection thresholds were measured for a closed contour, defined by Gabor patches, embedded in a randomly oriented Gabor-patch background. The visibility of the contour was controlled by varying the density of the background elements. Thresholds, defined in terms of the ratio of contour element spacing to average background spacing were measured with a clinical staircase procedure. Thresholds measured by two observers differed on average by 0.023 +/- 0.075 or about one half the increment between cards. Children and adults showed only small practice effects (0.022 +/- 0.051 vs 0.053 +/- 0.077, respectively) and average unsigned differences between repeated measures were equivalent to approximately 1 card across groups. A card-based test of second-order contour integration produces reliable estimates of contour integration performance in normal and amblyopic observers, including children.  相似文献   

8.
The theory of multistage integration is based on evidence that the visual brain consists of several parallel multistage processing systems, each specialized for a given attribute such as colour or motion. Each stage of a given system processes information at a distinct level of complexity. Our theory supposes that activity at any stage of a given multistage processing system is perceptually explicit--that is to say, it requires no further processing to generate a conscious experience. This activity can be integrated, or bound, with the perceptually explicit activity at any given stage of another or the same multistage processing system. Such binding is therefore not a process that generates a conscious experience, but rather one that brings different conscious experiences together. Many perceptual advantages result from such a flexible and dynamic integrative system. Conversely, there would be disadvantages to limiting perception and binding to hypothetical ''terminal'' stages of such processing systems or to hypothetical ''integrator'' areas. Although we formulate our hypothesis in terms of the visual brain, we believe it might form a general principle of brain functioning.  相似文献   

9.
边缘效应的空间尺度与测度   总被引:7,自引:0,他引:7  
周婷  彭少麟 《生态学报》2008,28(7):3322-3333
综述了边缘效应的空间尺度类型以及在不同尺度上的测度方法.基于大量的研究整合,认为边缘效应空间尺度的划分,可以根据空间尺度的不同以及边缘效应形成和维持因素,分为大中小3个尺度类型,即大尺度的生物群区交错带、中尺度的景观类型之间的生态交错带和小尺度的斑块(生态系统)之间的群落交错区.大尺度主要是以植被气候带为标志的生物群区间的边缘效应,这种地带性的交错区主要受大气环境条件的影响.中尺度类型主要包括城乡交错带、林草交错带、农牧交错带等类型,是不同生态系统要素的空间交接地带,在物质能量等相互流动的作用下变得更为复杂.小尺度水平上是指斑块之间的交错所形成的边缘效应,受小地形等微环境条件及生物非生物等因子的制约,研究主要集中在群落边缘、林窗边缘和林线交错带等方面.对边缘效应测度的定量化研究有助于更加深入理解边缘效应.在大尺度水平上,边缘效应测度的研究主要是应用数量生态学等方法,研究不同气候带之间界线的划分及其物种分布的梯度规律性.中尺度水平上应用景观生态学的3S技术等方法,侧重于研究交错带的动态变化趋势及位置宽度的判定.小尺度水平上通过对距离边缘的长度,各群落中种群的数量、结构、多样性等定量指标的测定来构建测度公式,从而对边缘效应的强度进行量化,并反映边缘对群落的正负效应.总体上看,主要集中于中小尺度上,未来应该强化大尺度边缘效应测度的研究.  相似文献   

10.
  1. Download : Download high-res image (278KB)
  2. Download : Download full-size image
  相似文献   

11.
Zhou T  Peng S L 《农业工程》2008,28(7):3322-3333
Classification of spatial scales and measurement of edge effects in ecology were reviewed. The spatial scales can be classified into large scale (biome ecotone), meso-scale (ecological ecotone) and small scale (community ecotone) through the formation and maintenance of edge effects in ecology based on the synthetic analysis of published literatures. The biome ecotone is influenced by climate, regional dominant vegetation and terrain environment. The ecological ecotone is usually distributed in the transitional region with remarkable habitat heterogeneity. It connects adjacent ecosystems and affects the flow of energy and nutrient. Nowadays, study on edge effects in ecology mainly focuses on boundary sensitivity which associates with urban-rural ecotone, forest-grassland ecotone, agro-pastoral ecotone, forest-farmland ecotone, water-land ecotone and forest-swamp ecotone. As to the community ecotone which links with different patches to the interior of the community, previous studies focused on community edge, gap edge and treelines. The borderlines of different biome ecotones and the gradients of species distribution in the biome ecotones have been investigated through the method of quantitative ecology. The dynamic change, location and width of the ecological ecotone have been studied using the Geographic Information System (GIS), Remote Sensing (RS) and Global Positioning System (GPS) technologies and the landscape ecology theory. As important indicators, distance from edge, population, structure and diversity determined for establishing models can be applied to measure the intensity of edge effects and decide the positive or negative impact on communities. Although study on the edge effects in ecology was mostly reported at the meso-scale and small scale, study at large scale should be paid more attention as it is the potential value in ecology and global change fields.  相似文献   

12.
Nanoliter scale PCR with TaqMan detection.   总被引:6,自引:0,他引:6       下载免费PDF全文
We monitored PCR in volumes of the order of 10 nl in glass microcapillaries using a fluorescence energy transfer assay in which fluorescence increases if product is made due to template-dependent nucleolytic degradation of an internally quenched probe (TaqMan assay). This assay detected single starting template molecules in dilutions of genomic DNA. The results suggest that it may be feasible to determine the number of template molecules in a sample by counting the number of positive PCRs in a set of replicate reactions using terminally diluted sample. Since the assay system is closed and potentially automatable, it has promise for clinical applications.  相似文献   

13.
S Sally  R Gurnsey 《Spatial Vision》2001,14(2):217-234
Humans are extremely sensitive to symmetry when it is foveated but sensitivity drops as a symmetrical region of a fixed size is moved into the periphery. A psychophysical study was undertaken to determine if eccentricity dependent sensitivity loss could be overcome by magnifying stimuli at each eccentricity (E) by a factor F = 1 + E/E2, where E2 indicates the eccentricity at which the size of a stimulus must be doubled, relative to a foveal standard, to achieve equivalent performance. The psychophysical task required subjects to decide on each trial in which of two intervals a symmetrical stimulus had been presented. Stimuli were presented at a range of sizes and eccentricities (0 to 8 degrees) and the probability of a correct discrimination was computed for each condition. In Experiment 1, thresholds were measured with stimuli set to maximum available contrast and, in Experiment 2, stimuli were presented at a constant multiple of contrast detection threshold. In both experiments, a single scaling function removed most of the eccentricity dependent variation from the data. However, the E2 value recovered for one subject tested in both experiments was larger by about 65% when stimuli were not equated for visibility. We conclude that symmetry detection can be equated across a range of eccentricities by scaling stimuli with an E2 in the range of 0.88 to 1.38 degrees. Failure to equate for visibility across all viewing conditions may result in an inflated estimate of E2.  相似文献   

14.
The color of visual pigments is experimentally shown to be controlled by excited state effects. These effects which define the primary absorption of light by rhodopsin are considered together with results obtained from emission and picosecond spectroscopy. In addition, the molecular changes induced in rhodopsin when a photon is absorbed are analyzed using resonance Raman spectroscopy. The molecular changes observed are compared in bacterial and photoreceptor rhodopsins. This comparison yields a unique explanation for the biological role of the cis-trans isomerization in visual transduction.Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

15.
Decisions about noisy stimuli require evidence integration over time. Traditionally, evidence integration and decision making are described as a one-stage process: a decision is made when evidence for the presence of a stimulus crosses a threshold. Here, we show that one-stage models cannot explain psychophysical experiments on feature fusion, where two visual stimuli are presented in rapid succession. Paradoxically, the second stimulus biases decisions more strongly than the first one, contrary to predictions of one-stage models and intuition. We present a two-stage model where sensory information is integrated and buffered before it is fed into a drift diffusion process. The model is tested in a series of psychophysical experiments and explains both accuracy and reaction time distributions.  相似文献   

16.
Animal camouflage patterns may exploit, and thus give an insight into, visual processing mechanisms. In one common type of camouflage the borders of the coloured patterns are enhanced by high contrast lines. This type of camouflage is seen on many frogs and we use it as the basis for speculating about vision in a small, frog-eating snake. It is argued that a simple categorization of intensity profiles, such as that invoked by a mechanism that detects phase-congruence, occurs at an early stage of snake vision. We show that edge-detectors using a phase-congruence strategy will be unable to distinguish between 'natural' step-edges and the enhanced border profiles commonly seen on cryptic animals, and that the camouflage will be effective over a wide range of spatial scales.  相似文献   

17.
The impulse discharges of neurons in the inferior parietal association cortex (area 7) were studied in the alert, behaving rhesus monkey, trained to fixate and follow visual targets. Four classes of cells related to visual or visuomotor function were found. Cells of one of these are sensitive to visual stimuli and have large, contralateral receptive fields with maximal sensitivity in the far temporal quadrants. Cells of the other three classes are related to visuomotor functions: visual fixation, tracking, and saccades. They are neither sensory nor motor in the usual sense for they are activated only by interested fixation of gaze or tracking, or before visually evoked saccadic eye movements. They are not activated during the spontaneous saccades and fixations that the monkey makes while casually exploring his environment. It is hypothesized that the light-sensitive neurons provide the visual input to the visuomotor cells that, in turn, produce a command signal for the direction of visual attention and for shifting the focus of attention from one target to another.  相似文献   

18.
Although the behavioral repertoire of crustaceans is largely guided by visual information their visual nervous system has been little explored. In search for central mechanisms of visual integration, this study was aimed at identifying and characterizing brain neurons in the crab involved in binocular visual processing. The study was performed in the intact animal, by recording intracellularly the response to visual stimuli of neurons from one of the two optic lobes. Identified neurons recorded from the medulla (second optic neuropil), which include sustaining neurons, dimming neurons, depolarizing and hyperpolarizing tonic neurons and on-off neurons, all presented exclusively monocular (ipsilateral) responses. In contrast, all wide field movement detector neurons recorded from the lobula (third optic neuropil) responded to moving stimuli presented to the ipsilateral and to the contralateral eye. In these cells, the responses evoked by ipsilateral or contralateral stimulation were almost identical, as revealed by analysing the number and amplitude of the elicited postsynaptic potentials and spikes, and the ability to habituate upon repeated visual stimulation. The results demonstrate that in crustaceans important binocular processing takes place at the level of the lobula.  相似文献   

19.
The literature on the interaction between visual imagery and visual perception provides conflicting outcomes. Some studies show imagery interferes with perception whereas others show facilitation on perceptual tasks. The effects of visual imagery on a detection task were examined in six experiments. When either a bar image (Experiment 1) or an image of the letter 'l' (Experiment 3) overlapped with the targets, interference was discovered; however, images not overlapping the target did not effect detection (Experiments 2 and 4). Increasing the number of target locations caused the interfering effects of the image to disappear; however, there was no evidence of facilitation (Experiment 5). Physical stimuli interfered with detection whether there was overlap or not (Experiment 6). The results indicate that imagery induced interference may be lessened with more complex visual displays.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号