首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DeGrasse JA 《PloS one》2012,7(3):e33410
The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs). Staphylococcal food poisoning (SFP) results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB) that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APT(SEB1), successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide.  相似文献   

2.
Peptide libraries can be used to identify ligands that bind specifically to a desired protein. These peptides may have significant advantages as specific ligands for affinity chromatography separations. This article describes the use of one of such peptide, Try-Asn-Phe-Glu-Val-Leu, as a ligand for the purification of S-protein using affinity chromatography. General strategies for peptide immobilization are discussed and the conditions for peptide immobilization to Emphazetrade mark gel are optimized. The effects of peptide orientation and peptide densities on protein binding are studied. Results indicate that the peptide affinity is not affected by the orientation of the peptide during immobilization, but association constants can be reduced by one order of magnitude when compared with the values in solution.With increased peptide density, the protein binding capacity of the gel increases, but both the percentage of peptide utilization and apparent binding constant between immobilized peptide and S-protein decrease. S-protein is separated from a mixture with BSA via affinity chromatography using specific elution with the peptide in solution.Finally, direct purification of S-protein from an enzymatic digestion mixture of ribonuclease A is demonstrated.(c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
The utilization of peptide ligands in biosensors and bioassays is dependent on achieving high affinity of these peptides toward their targets. In a previous report, we identified 12-mer peptides that could selectively bind to Staphylococcal enterotoxin B (SEB) using a phage-display library. In this study, we explore for new modification approaches to enhance the affinity of two different SEB-binding peptides. In order to identify the binding regions of selected peptides, the charged residues and the ones, critical for the structure of peptide, were replaced with alanine. However, a specific binding region could not be suggested as all mutant peptides have lost their affinities toward SEB completely. The modifications for the affinity enhancement were done by repeating the 12-mer peptide sequences. A 10-fold increase was observed in the binding affinity of one of the two-repeated peptides, while this modification did not affect the affinity of the other tested peptide. The peptide, with enhanced affinity, was further modified as three repeats; however the affinity of the peptide decreased. The structural basis of the affinity difference between modified peptides was examined by molecular dynamics simulation. The results showed that the conformational differences hold the key for affinity of peptides modified by repeating the sequence. This high affinity peptide with increased affinity is a promising molecular recognition agent to be used in the detection of SEB to be utilized in biosensing systems.  相似文献   

4.
The removal of pathogens such as toxins, viruses, bacteria, and prions in human blood, mammalian cell culture media, fermentation broths, food items, and water streams has gained increasing importance in ensuring product safety and in combatting acts of terrorism. Adsorption processes can play an important role in removing such pathogens from solution without affecting other desirable components. Adsorptive columns that can remove specific families of pathogens would need to achieve a reduction of several logs in pathogen concentration. This requirement is much more stringent than the normal yield requirements associated with adsorptive separations aimed at product recovery and purification in a process stream. This paper considers the design of an adsorptive column aimed at reducing the concentration of infectious agents from a known volume of solution by several logs in a fixed amount of time. The general rate (GR) model of chromatography is used in the analysis, including all major transport and kinetic steps in the adsorption process. The theory, with no adjustable parameters, is shown to predict with great accuracy the effect of residence time on the log removal of staphylococcal enterotoxin B (SEB) from solution using an affinity resin with a small peptide (YYWLHH) that has been found to bind specifically to this toxin.  相似文献   

5.
By fusion of mouse spleen cells immunized with five different staphylococcal enterotoxins (SEA, SEB, SEC2, SED, and SEE) with myeloma cells, we obtained 15 hybridomas producing monoclonal antibodies (mAbs). Four mAbs were reactive with both SEA and SEE, whereas 8 mAbs were reactive with SEB and SEC2. One mAb reacted with SEA, SED, and SEE. The other two mAbs were found to be reactive with all five serotypes of SEs. The mAbs specific for five serotypes of SEs were found to be most reactive with SED, reactive with SEA, and slightly less reactive with SEB, SEC2, and SEE. Those mAbs with specificities for all serotypes of SEs may be valuable to prepare immunoadsorbent(s) for isolation of SEs and to detect SEs in foods and clinical specimens involved in outbreaks of staphylococcal food poisoning.  相似文献   

6.
Anhydroelastase was effectively isolated by a single operation of affinity chromatography from a complex mixture produced by phenylmethylsulfonylation and alkaline treatment of porcine pancreatic elastase. The adsorbent used for the chromatography was 6-aminohexanoyl-trialanine, which corresponds to a product of elastase action, immobilized on Sepharose 4B. Successful resolution by the operation indicated that this immobilized ligand possesses the highest affinity for anhydroelastase among various proteins including regenerated elastase in the mixture. Comparative affinity chromatography on immobilized anhydroelastase and on immobilized native elastase further confirmed the stronger interaction of anhydroelastase with the product-type peptides. Immobilized anhydroelastase was also found to be useful in the purification and search for naturally occurring proteinase inhibitors.  相似文献   

7.
Staphylococcal enterotoxin B (SEB) is an exotoxin produced by Staphylococcus aureus and commonly associated with food poisoning. In this study, SEB‐binding peptides were identified by screening a phage displayed peptide library. The binding of peptides to SEB was tested with isothermal titration calorimetry (ITC) and of the five selected peptides, three showed affinity to SEB, with one measured to have the highest affinity constant (105 M?1). ITC revealed that the interaction of peptide ligands with SEB was driven entropically and the binding was dominated by hydrophobic interactions. Circular dichroism (CD) measurements and molecular dynamics (MD) simulations, together, give a structural insight into the interaction of peptides with SEB. While SEB binding peptides showed random coil structure before binding, after complex formation they had more ordered structures. The peptide with highest affinity to SEB showed stable conformation during MD simulation. Taken together, our approach about thermodynamic and structural characterization of peptide ligands can be used to develop aptamers, with high affinity and selectivity, for biosensor applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Staphylococcal enterotoxins (SEs) are the second most common causal agents of food poisoning throughout the world. Staphylococcal enterotoxin B (SEB) is one of the most potent and a listed biological warfare agent. Therefore, its quick, accurate and sensitive detection is of paramount importance. But availability of sensitive and specific antibodies against SEB is the major bottleneck in the development of an immunodetection system. Therefore, in the present study seb gene was cloned and expressed in a heterologous host resulting in a yield of 92 mg pure toxin per litre of culture broth after Ni–NTA affinity purification. Antibodies raised against the recombinant toxin did not cross react with related enterotoxins and organisms that can gain access in the food. Further, a sandwich ELISA was developed to detect SEB after extraction from artificially spiked food samples like milk, orange juice, skim milk and khoya. The sandwich ELISA was able to detect SEB in the range of 0.25 to 0.49 ng/ml or g of food. The detection system developed in the present study is at least as specific and sensitive as other commercially available kits which use monoclonal antibodies.  相似文献   

9.
We report our experimental results supporting the hypothesis that a specific metal-chelating peptide (CP) on the NH2 terminus of a protein can be used to purify that protein using immobilized metal ion affinity chromatography (IMAC). The potential utility of this approach resides with recombinant proteins since the nucleotide sequence that codes for the protein can be extended to include codons for the chelating peptide and thereby generate the gene for a chimeric CP-protein that can be cloned, expressed, and affinity-purified with immobilized metal ions. The chelating peptide purification handle could then be removed chemically or enzymatically after purification has been achieved to generate a protein with the natural amino acid sequence. The feasibility of using a chelating peptide as a purification handle has been demonstrated using a leuteinizing hormone-releasing hormone (LHRH) analog, 2-10 LHRH, which contains the previously identified chelating peptide, His-Trp, on the NH2 terminus. 2-10 LHRH had a high affinity for a Ni(II) IMAC column due to the NH2-terminal dipeptide sequence His-Trp, forming a coordination complex with Ni(II), whereas the controls, 3-10 LHRH and 4-10 LHRH, lacking the CP sequence, did not bind. Furthermore, 2-10 LHRH could be purified from a mixture of histidine-containing peptides on a Ni(II) IMAC column in one step. His-Trp proinsulin was used as a model of a recombinant CP-protein. The S-sulfonates of His-Trp-proinsulin and proinsulin were isolated from Escherichia coli engineered to overproduce these proteins as trpLE' fusion proteins. His-Trp-proinsulin(SSO3-)6 had a higher affinity for immobilized Ni(II) than proinsulin (SSO3-)6. Both proteins were eluted by decreasing the pH or by introducing a displacing ligand into the buffer. Ni(II) eluted from the column with much higher concentrations of displacing ligand than the proteins.  相似文献   

10.
An oxytocin/bovine neurophysin I biosynthetic precursor, [N epsilon-diacetimidyl-30,71, des-His106]pro-OT/BNPI, was synthesized from a synthetic oxytocinyl peptide, 1/2Cys-Tyr-Ile-Gln-Asn-1/2Cys-Pro-Leu-Gly-Gly-Lys-Arg, and native neurophysin by chemical semisynthesis. The semisynthetic precursor contains the entire sequence of the biosynthetic precursor deduced from the complementary DNA structure except for omission of the carboxyl-terminal histidine residue. The covalent structure of the semisynthetic product was verified by amino acid analysis and amino-terminal analysis. Analytical affinity chromatography was employed to evaluate noncovalent binding properties of the precursor. The precursor does not bind significantly to immobilized Met-Tyr-Phe, a hormone binding site ligand. In contrast, the acetimidated precursor binds to immobilized bovine neurophysin II, with a 13-fold higher affinity than does acetimidated neurophysin itself. When a hormonal ligand, [Lys8]vasopressin, was added to the elution buffer at the concentration of 0.1 mM so that a major portion of the immobilized BNPII was liganded, the affinity between the immobilized liganded BNPII and the precursor was enhanced 8-fold and approached the affinity for the liganded (bovine neurophysin I-immobilized BNPII) interaction. The data imply that the precursor can self-associate and that this self-association is closely related to that of liganded neurophysin. The tripeptide affinity matrix data argue that, in the precursor, the ligand binding site of the neurophysin domain is occupied intramolecularly by the hormone domain. The data verify the view that both the self-association surface and hormone binding site are established upon precursor folding. A disulfide stability analysis showed the resistance, to disulfide interchange by dithiothreitol, of semisynthetic precursor but not of neurophysin, as judged by protein association and peptide ligand binding activities, respectively. The results argue that the molecular structure of the precursor is established upon precursor folding and before enzymatic processing that produces mature hormone and neurophysin.  相似文献   

11.
从噬菌体表面展示肽库中筛选葡萄球菌B型肠毒素抑制剂   总被引:1,自引:0,他引:1  
通过生物淘选,从噬菌体表面展示12肽肽库中筛选能与葡萄球菌B型肠毒素(staphylococcalenterotoxinB ,SEB)结合且能抑制其肠毒活性的特异性短肽.采用Phage ELISA和MTT鉴定所得目的肽的亲和性;根据优势噬菌体阳性克隆序列合成相应多肽.利用竞争ELISA研究合成肽与SEB单克隆抗体竞争结合SEB的情况;通过动物实验考察其抑制SEB的超抗原特性和肠毒活性情况.筛选所得短肽在一定浓度范围内可以抑制SEB对鼠脾淋巴细胞的激活;合成肽与SEB质量比为16 0∶1时,合成肽可较好地抑制SEB对乳猫的肠毒活性,并对SEB引起的小鼠致死具有明显保护作用.结果表明,初步得到了能与SEB特异结合并能抑制SEB超抗原特性和肠毒活性的短肽,为进一步研制SEB高效抑制剂奠定了基础.  相似文献   

12.
An affinity chromatography step was developed for purification of recombinant B-Domain Deleted Factor VIII (BDDrFVIII) using a peptide ligand selected from a phage display library. The peptide library had variegated residues, contained both within a disulfide bond-constrained ring and flanking the ring. The peptide ligand binds to BDDrFVIII with a dissociation constant of approximately 1 microM both in free solution and when immobilized on a chromatographic resin. The peptide is chemically synthesized and the affinity resin is produced by coupling the peptide to an agarose matrix preactivated with N-hydroxysuccinimide. Coupling conditions were optimized to give consistent and complete ligand incorporation and validated with a robustness study that tested various combinations of processing limits. The peptide affinity chromatographic operation employs conditions very similar to an immunoaffinity chromatography step currently in use for BDDrFVIII manufacture. The process step provides excellent recovery of BDDrFVIII from a complex feed stream and reduces host cell protein and DNA by 3-4 logs. Process validation studies established resin reuse over 26 cycles without changes in product recovery or purity. A robustness study using a factorial design was performed and showed that the step was insensitive to small changes in process conditions that represent normal variation in commercial manufacturing. A scaled-down model of the process step was qualified and used for virus removal studies. A validation package addressing the safety of the leached peptide included leaching rate measurements under process conditions, testing of peptide levels in product pools, demonstration of robust removal downstream by spiking studies, end product testing, and toxicological profiling of the ligand. The peptide ligand affinity step was scaled up for cGMP production of BDDrFVIII for clinical trials.  相似文献   

13.
Studies suggest that staphylococcal enterotoxin B (SEB) is initially harbored in the kidney by binding to digalactosylceramide molecules in the proximal tubular cells. However, little is known in regard to the peptide motif within SEB that binds to these cells and imparts toxic effects. Herein, using human kidney proximal tubular cells (PTs) we have performed a systematic study on the binding of various peptides and peptide analogs of SEB and demonstrate a structure-functional relationship. Using [(125)I]labeled SEB peptides, we show a high affinity and displaceable binding of SEB 191-220 to human PT cells. Binding was mitigated by the use of antibody against SEB, by digalactosylceramide (the putative receptor), and by the use of endoglycoceramidase, which selectively removes the oligosaccharide backbones from glycosphingolipids. Our structure/ functional studies revealed that peptide 130-160 induces a concentration-dependent increase in programmed cell death/ apoptosis in human proximal tubular cells. Mechanistic studies further suggest that SEB/SEB peptide (130-160) impart apoptosis via the activation of neutral sphingomyelinase, which hydrolizes sphingomyelin to ceramide and phosphocholine. SEB 130-160 mediated apoptosis was mitigated by preincubation of cells with antibody against SEB and an SEB 130-160 antibody.  相似文献   

14.
Affinity purification of fibrinogen using a ligand from a peptide library.   总被引:6,自引:0,他引:6  
An affinity resin containing the peptide ligand Phe-Leu-Leu-Val-Pro-Leu (FLLVPL) has been developed for the purification of fibrinogen. The ligand was identified by screening a solid-phase combinatorial peptide library using an immunostaining technique. The specific binding of fibrinogen to the ligand has been characterized by isothermal calorimetry and adsorption isotherms and is dominated by both hydrophobic interactions and ionic interactions with the N-terminal free amino group. The effective association constant of fibrinogen was substantially higher when the peptide was immobilized on the resin than in solution; moreover, it increased with increasing peptide density, suggesting a cooperative binding effect. A low ionic strength buffer at pH 4 was used successfully to elute adsorbed fibrinogen from the column with high purity, retention of factor XIII crosslinking activity, and minimal, if any, loss of biological function. This general approach to ligand selection and characterization can be used to develop peptide ligands for the affinity purification of diverse proteins on a large scale.  相似文献   

15.
Since the development of affinity chromatography, affinity purification technology has been applied to many aspects of biological research, becoming an indispensable tool. Efficient strategies for the identification of biologically active compounds based on biochemical specificity have not yet been established, despite widespread interest in identifying chemicals that directly alter biomolecular functions. Here, we report a novel method for purifying chemicals that specifically interact with a target biomolecule using reverse affinity beads, a receptor-immobilized high-performance solid-phase matrix. When FK506-binding protein 12 (FKBP12) immobilized beads were used in this process, FK506 was efficiently purified in one step either from a mixture of chemical compounds or from fermented broth extract. The reverse affinity beads facilitated identification of drug/receptor complex binding proteins by reconstitution of immobilized ligand/receptor complexes on the beads. When FKBP12/FK506 and FKBP12/rapamycin complexes were immobilized, calcineurin and FKBP/rapamycin-associated protein were purified from a crude cell extract, respectively. These data indicate that reverse affinity beads are powerful tools for identification of both specific ligands and proteins that interact with receptor/ligand complexes.  相似文献   

16.
The objective of this study was to determine the effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Linear and cyclic forms of the fibronectin (Fn) cell-binding domain peptide Arg-Gly-Asp (RGD) were covalently immobilized to glass, and Fn was adsorbed onto glass slides. Bovine aortic endothelial cells attached to the surfaces for 15 min. The critical wall shear stress at which 50% of the cells detached increased nonlinearly with ligand density and was greater with immobilized cyclic RGD than with immobilized linear RGD or adsorbed Fn. To directly compare results for the different ligand densities, the receptor-ligand dissociation constant and force per bond were estimated from data for the critical shear stress and contact area. Total internal reflection fluorescence microscopy was used to measure the contact area as a function of separation distance. Contact area increased with increasing ligand density. Contact areas were similar for the immobilized peptides but were greater on surfaces with adsorbed Fn. The dissociation constant was determined by nonlinear regression of the net force on the cells to models that assumed that bonds were either uniformly stressed or that only bonds on the periphery of the contact region were stressed (peeling model). Both models provided equally good fits for cells attached to immobilized peptides whereas the peeling model produced a better fit of data for cells attached to adsorbed Fn. Cyclic RGD and linear RGD both bind to the integrin alpha v beta 3, but immobilized cyclic RGD exhibited a greater affinity than did linear RGD. Receptor affinities of Fn adsorbed to glycophase glass and Fn adsorbed to glass were similar. The number of bonds was calculated assuming binding equilibrium. The peeling model produced good linear fits between bond force and number of bonds. Results of this study indicate that 1) bovine aortic endothelial cells are more adherent on immobilized cyclic RGD peptide than linear RGD or adsorbed Fn, 2) increased adhesion is due to a greater affinity between cyclic RGD and its receptor, and 3) the affinity of RGD peptides and adsorbed Fn for their receptors is increased after immobilization.  相似文献   

17.
Bispecific monoclonal antibodies (bsMAb) are unique macromolecules functioning as cross-linkers with two different predetermined binding specificities. A wide range of potential applications employing these probes can be envisioned in immunodiagnostics and immunotherapy. One of the major limitations for the use of bsMAbs produced by hybrid-hybridomas is the production of parental monospecific antibodies along with bsMAbs. Hence, the purification of desired bsMAb free from both parental mAbs and other possible promiscuous combinations is essential. Purification of antibodies is the single greatest obstacle in obtaining an immunoprobe with high specific activity. This review describes the affinity purification and affinity co-purification techniques for the separation of bsMAb as a pre-formed immune complex or as a pure species. The use of immobilized ligands is the basis of affinity chromatography. Affinity chromatography can be classified into three different categories depending on the properties of the immobilized ligand. The ligand-specific affinity chromatography is based on the extremely specific immobilized ligand, directed towards the protein or antibody of interest. Using a dual, sequential affinity chromatography, bsMAb can be purified from a mixture of bispecific and monospecific monoclonal antibodies with a ligand specific for each antibody. Thiophilic adsorption is a group-specific affinity method that can be successfully used to separate monospecific forms from bispecific species by salt gradient elution. Affinity co-chromatography offers a convenient one-step method for purification of bulk amounts of immunoconjugates for diagnostic applications by exploiting several dye-ligands known to bind certain enzymes. The same method could be potentially used for quality control and quality assurance purposes in industrial biotechnology.  相似文献   

18.
The staphylococcal enterotoxins (SEs) are capable of causing both food poisoning and a toxic shock-like illness in man. In addition, SEs are known to act as superantigens, stimulating T-cells according to their T-cell receptor Vβ type. Relatively little is known of their antigenic determinants and how these may relate to the structure and function of the toxins. As a step in the study of these relationships, the entire molecule of SEB was synthesized in duplicate as a series of octapeptides overlapping by seven residues. This series thus represented all the potential linear epitopes of eight residues or less. The reactivity of the octapeptide series with antisera raised to purified SEB and to formaldehyde-inactivated SEB has been used to locate several antigenic sites on native SEB and to identify antigenic differences in the toxoid. Three antigenic peptides identified from the antigenic profile were synthesized and characterized. These represented amino acids 21–32, 93–107 and 202–217 of SEB. None of these peptides affected SEB-induced T-cell proliferation. However, the occurrence or absence of cross-reactivity of these peptides with antibodies to native SEB corresponds to the degree of exposure and/or the rigidity of these regions within SEB.  相似文献   

19.
A peptide screened from a combinatorial peptide library with the sequence EYKSWEYC performed best as a ligand for affinity chromatography of human blood coagulation factor VIII (FVIII). With this peptide immobilized on monolithic CIM columns via epoxy groups we were able to capture FVIII from diluted plasma. Rational substitution of amino acids by spot synthesis revealed that lysine and cysteine can be exchanged for almost all other proteinogenic amino acids without loss of affinity to FVIII. This offers the possibility of site-specific attachment via either one of these residues or the N- or C-terminus. The aliphatic positions O5 (tryptophan) and O7 (tyrosine), together with the charged position O6 (glutamic acid), seem to form the core of the binding unit. In the positions with aliphatic amino acids, substitution by tyrosine or phenylalanine, and in the positions with charged amino acids, substitution by aspartic acid or lysine, preserved the affinity to FVIII. The functionality of the selected peptides was confirmed by affinity chromatography. Selective binding and elution could be achieved.  相似文献   

20.
BACKGROUND: Flow cytometric microsphere-based binding assays can be used to measure molecular interactions with high sensitivity. We have used multiplexed microsphere technology to explore the effect that binding site density has on the apparent affinity of a soluble interaction partner. METHODS: The interaction of a nuclear receptor, peroxisome proliferator-activated receptor gamma ligand binding domain (PPARgamma LBD), with a synthetic peptide derived from a nuclear receptor coactivator protein, PPARgamma coactivator-1 alpha (PGC-1alpha), is the interacting system being studied. The density of this peptide coupled to fluorescently unique microsphere populations is varied by co-incubating the biotinylated peptide and avidin-coated microsphere populations with increasing the amounts of free D-biotin. The discrete-density peptide-coupled microsphere populations are combined to conduct a multiplexed binding experiment with Alexa 532-labeled PPARgamma LBD, in the absence or presence of a small molecule ligand. RESULTS: As the immobilized binding site density of PGC-1alpha peptide on fluorescent microspheres is increased the measured apparent affinity for PPARgamma LBD is increased. CONCLUSIONS: The density of binding sites immobilized to a surface has a pronounced effect on the apparent affinity for soluble binding partners. By controlling and varying the binding site density it is possible to increase the sensitivity of an interaction assay. In multiplexed assay formats it should be possible to normalize intrinsically unequal binding interactions by individually optimizing the binding site density of the immobilized interaction partner. However, to quantitatively measure intrinsic affinities of molecular interactions, low binding site densities are required and multivalent reagents must be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号