首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heating cultures of Leishmania braziliensis panamensis (grown at 26°C) to 34°C for 1.5–12 h transformed the cells to an ellipsoidally shaped form. The heat treatment caused an increase in the rate of oxidation of both medium and long chain fatty acids but decreased the rate of oxidation of [1-14C]glucose. The rate of fatty acid oxidation continued to increase for times as long as 20 h after returning the cultures to 26°C. In both the promastigote and heat-induced ellipsoidal forms, the ratio of 14CO2 release from [1-14C]laurate to that from [12-14C]laurate was generally larger than four, whereas this ratio from [1-14C]oleate relative to [10-14C]oleate was approximately two. These data show that metabolic and morphological differentiation begin after a short heat treatment and that some metabolic changes may continue even after the reverse transformation is initiated. The data also suggest that either the ω-terminal portion of the fatty acids is not completely oxidized to acetyl CoA and/or that there are two functional fatty acid oxidation pathways in Leishmania.  相似文献   

2.
The composition of volatile fatty acids in the biogas digester based on cattle manure as substrate and stabilised at 25°C showed that it contained 87–88% branched chain fatty acids, comprising of isobutyric and isovaleric acids, in comparison to 38 % observed in the digester operating at 35°C. Mixed cellulolytic cultures equilibrated at 25°C (C-25) and 35‡C (C-35) showed similar properties, but rates of hydrolysis were three times higher than that observed in a standard biogas digester. The proportion of isobutyric and isovaleric were drastically reduced when C-25 was grown with glucose or filter paper as substrates. The volatile fatty acids recovered from C-25 (at 25°C) inhibited growth of methanogens on acetate, whereas that from C-35 was not inhibitory. The inhibitory effects were due to the branched chain fatty acids and were observed with isobutyric acid at concentrations as low as 50 ppm. Addition of another micro-organismRhodotorula selected for growth on isobutyric completely reversed this inhibition. Results indicate that the aceticlastic methanogens are very sensitive to inhibition by branched chain fatty acids and reduction in methane formation in biogas digester at lower temperature may be due to this effect.  相似文献   

3.
The effect of growth temperature on the lipid fatty acid composition was studied over a temperature range from 35 to 10° C with 5° C intervals in four exponentially growing fungi: Aspergillus niger, Neurospora crassa, Penicillium chrysogenum, and Trichoderma reesei. Fatty acid unsaturation increased in A. niger, P. chrysogenum, and T. reesei when the temperature was lowered to 20–15, 20, and 26–20° C, respectively. In A. niger and T. reesei, this was due to the increase in linolenic acid content. In P. chrysogenum, the linolenic acid content increased concomitantly with a more pronounced decrease in the less-unsaturated fatty acid, oleic acid, and in palmitic and linoleic acids; consequently, the fatty acid content decreased as the temperature was lowered to 20° C. In T. reesei, when the growth temperature was reduced below 26–20° C, fatty acid unsaturation decreased since the mycelial linolenic acid content decreased. In A. niger and P. chrysogenum, the mycelial fatty acid content increased greatly at temperatures below 20–15° C. In contrast, in N. crassa, fatty acid unsaturation was nearly temperature-independent, although palmitic and linoleic acid contents clearly decreased when the temperature was lowered between 26 and 20° C; concomitantly, the growth rate decreased. Therefore, large differences in the effects of growth temperature on mycelial fatty acids were observed among various fungal species. However, the similarities found may indicate common regulatory mechanisms causing the responses. Received: 1 March 1995 / Accepted: 8 May 1995  相似文献   

4.
The basis of the biologic responses of C3H/HeJ mice to endotoxin administration in relation to the structural linkages in the lipid A portion of the lipopolysaccharide (LPS) of Pseudomonas aeruginosa and Escherichia coli were investigated. P. aeruginosa LPS was found to be immunogenic, mitogenic, and toxic, but not lethal, in C3H/HeJ mice. The observed mitogenicity in spleen cells was directed toward immunoglobulin- (Ig) bearing cells, was present in response to isolated and solubilized lipid A, and was inhibitable by polymixin B. The P. aeruginosa LPS was chemically analyzed in order to define its composition and exclude the presence of contaminating proteins being responsible for the biologic responses of C3H/HeJ mice that were observed. Structural analysis of the linkages of the fatty acids to the glucosamine backbone in the lipid A of P. aeruginosa and E. coli revealed similarities in terms of the ratio of hydroxy fatty acids to straight chain fatty acids and the way in which these 2 types of fatty acids were linked to the backbone. Differences were seen in the carbon chain length of the fatty acid substituents, and the substituent on the hydroxy fatty acid that is directly ester linked to the glucosamine backbone. These data indicate that the refractivity of C3H/HeJ mice to the biologic effects after the administration of Gram-negative endotoxins may be limited to enterobacterial LPS. Those differences we found in the chain length and/or linkages of the fatty acid substituents in the lipid A portion of the LPS between P. aeruginosa and E. coli may be sufficient to render C3H/HeJ mice responsive to the biologic effects of nonenterobacterial endotoxins.  相似文献   

5.
Alteration of the fatty acid composition of mouse LM cell lipids dramatically affected the concanavalin A binding and concanavalin A-mediated hemadsorption properties of these cells. A critical temperature for these two concanavalin A related phenomena observed at 15–19° in cells with unaltered fatty acid composition was shifted to 22–28° for cells containing a higher proportion of saturated fatty acids and lowered to 7–11° for cells containing polyunsaturated fatty acids substituted for monoenoic unsaturated fatty acids. In contrast, a second critical temperature (at 5–7°) observed for concanavalin A binding and concanavalin A-mediated hemadsorption to LM cells was essentially unchanged by alterations in cellular lipid fatty acid composition. We conclude that a change in membrane lipid freezing point is responsible for the higher critical temperature (15–19°), and factors other than lipid melting properties, perhaps cytoskeleton structure, contribute to the lower critical temperature (5–7°) for lectin interactions with the exposed surface of LM cells.  相似文献   

6.
The composition of tissue and membrane fatty acids in ectothermic vertebrates is influenced by both temperature acclimation and diets. If such change in body lipid composition and thermal physiology were linked, a diet-induced change in body lipid composition should result in a change in thermal physiology. We therefore investigated whether the selected body temperature of the agamid lizardAmphibolurus nuchalis (body mass 20 g) is influenced by the lipid composition of dietary fatty acids and whether diet-induced changes in thermal physiology are correlated with changes in body lipid composition. The selected body temperature in two groups of lizards was indistinguishable before dietary treatments. The selected body temperature in lizards after 3 weeks on a diet rich in saturated fatty acids rose by 2.1 °C (photophase) and 3.3 °C (scotophase), whereas the body temperature of lizards on a diet rich in unsaturated fatty acids fell by 1.5 °C (photophase) and 2.0 °C (scotophase). Significant diet-induced differences were observed in the fatty acid composition of depot fat, liver and muscle. These observations suggest that dietary lipids may influence selection of body temperature in ectotherms via alterations of body lipid composition.Abbreviations bm body mass - FA fatty acid(s) - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids - T a air temperature - T b body temperature - UFA unsaturated fatty acids  相似文献   

7.
Changes in response to temperature of lipid classes, fatty acid composition and mRNA levels for acyl-lipid desaturase genes were studied in the marine unicellular cyanobacterium, Synechococcus sp. PCC 7002. The degree of unsaturation of C18 fatty acids increased in cells grown at lower temperature for all lipid classes, and ω3 desaturation occurred specifically in cells grown at low temperature. While the level of 18:1(9) fatty acids declined, desaturation at the ω3 position of C18 fatty acids increased gradually during a 12-h period after a temperature shift-down to 22°C. However, the mRNA levels of the desA (Δ12 desaturase), desB (ω3 desaturase) and desC (Δ9 desaturase) genes increased within 15 min after a temperature shift-down to 22°C; the desaturase gene mRNA levels also rapidly declined within 15 min after a temperature shift-up to 38°C. Therefore, the elevation of mRNA levels for the desaturase genes is not the rate-limiting event for the increased desaturation of membrane lipids after a temperature shift-down. The rapid, low-temperature-induced changes in mRNA levels occurred even when cells were grown under light-limiting conditions for which the growth rates at 22°C and 38°C were identical. These studies indicate that the ambient growth temperature, and not some other growth rate-related process, regulates the expression of acyl lipid desaturation in this cyanobacterium.  相似文献   

8.
In the analysis of lipophilic plant metabolites by gas chromatography?Cmass spectrometry a step is required to release fatty acids and other analytes from complex molecules. Seven alternative methods were compared to the standard method of 1% H2SO4/50°C/16?h using Desirée and Phureja potato tubers as models. With two sodium methoxide alkali-catalysed methods (0.5?M NaOCH3/50°C/1 and 16?h) recoveries of ferulic acids increased, long chain fatty acids and sterols decreased, 2-hydroxy acids were negligible, solanidine was absent and ??5-avenasterol isomerisation was minimal. Using a harsh alkali hydrolysis (1.0?M KOH/120°C/24?h) followed by a mild methylation (1% H2SO4/50°C/1.5?h), recoveries of polyunsaturated fatty acids were poor, sterols decreased but ??5-avenasterol isomerisation was minimal. With a mild alkali hydrolysis (0.5?M NaOH/100°C/5?min) followed by methylation with boron trifluoride (14%BF3/100°C/30?min) recoveries of sterols and 2-hydroxy fatty acids were similar to the standard method and ??5-avenasterol isomerisation was high. Lower ferulic acid recoveries, absence of solanidine and overestimation of fatty alcohols were evident in both methods involving alkali hydrolysis. Three different methods using hydrochloric acid (1.00?M HCl/70°C/5?h, 0.63?M HCl/110°C/2?h and 2.00?M HCl/50°C/24?h) all gave increased recoveries of 2-hydroxy acids, ferulic acids, solanidine and sterols, although ??5-avenasterol isomerisation increased. Hydrochloric acid methods are recommended for studies requiring quantitative determinations (i.e. concentration of metabolite in sample). Either the hydrochloric acid methods or the standard sulphuric acid method are suggested for determining relative concentrations between samples, although there is a requirement for further studies.  相似文献   

9.
The thermal stability of excitation transfer from pigment proteins to the Photosystem II reaction center of Nerium oleander adjusts by 10 Celsius degrees when cloned plants grown at 20°C/15°C, day/night growth temperatures are shifted to 45°C/32°C growth temperature or vice versa. Concomitant with this adjustment is a decrease in the fluidity of thylakoid membrane polar lipids as determined by spin labeling. The results are consistent with the hypothesis that there is a limiting maximum fluidity compatible with maintenance of native membrane structure and function. This limiting fluidity was about the same as for a number of other species which exhibit a range of thermal stabilities. Inversely correlated shifts in lipid fluidity and thermal stability occurred during the time course of acclimation of N. oleander to new growth temperatures. Thus, the temperature at which the limiting fluidity was reached changed during acclimation while the limiting fluidity remained constant. Although the relative proportion of the major classes of membrane polar lipids remained constant during adjustments in fluidity, large changes occured in the abundance of specific fatty acids. These changes were different for the phospho- and galacto-lipids suggesting that the fatty acid composition of these two lipid classes is regulated by different mechanisms. Comparisons between membrane lipid fluidity and fatty acid composition indicate that fluidity is not a simple linear function of fatty acid composition.  相似文献   

10.
In Saccharomyces cerevisiae, the rate of hydrogen peroxide (H2O2) diffusion through the plasma membrane decreases during adaptation to H2O2 by a still unknown mechanism. Here, adaptation to H2O2 was observed to modulate rapidly the expression of genes coding for enzymes involved in ergosterol and lipid metabolism. Adaptation to H2O2 also alters plasma membrane lipid composition. The main changes were the following: (a) there was a decrease in oleic acid (30%) and in the ratio between unsaturated and saturated long-chain fatty acids; (b) the phosphatidylcholine:phosphatidylethanolamine ratio increased threefold; (c) sterol levels were unaltered but there was an increased heterogeneity of sterol-rich microdomains and increased ordered domains; (d) the levels of the sterol precursor squalene increased twofold, in agreement with ERG1 gene down-regulation; and (e) C26:0 became the major very long chain fatty acid owing to an 80% decrease in 2-hydroxy-C26:0 levels and a 50% decrease in C20:0 levels, probably related to the down-regulation of fatty acid elongation (FAS1, FEN1, SUR4) and ceramide synthase (LIP1, LAC1) genes. Therefore, H2O2 leads to a reorganization of the plasma membrane microdomains, which may explain the lower permeability to H2O2, and emerges as an important regulator of lipid metabolism and plasma membrane lipid composition.  相似文献   

11.
The aim of this experiment was to study the effect of 24-epibrassinolide (BR27) on fatty acids composition and sugar content in winter oilseed rape callus cultured at 20 and 5°C. Studies have showed that BR27 action is highly temperature-dependent. The increase in sugar content (sucrose, glucose and fructose) by BR27 in concentration 100 nM was observed only in calli cultured at 20°C. At 5°C, quite the opposite effect of BR27 action was observed; where cold increased the sugar content, BR27 decreased it. BR27 at 20°C had a similar effect on the fatty acid composition of phospholipids (PL) as the cold in the process of frost hardening of oilseed rape calli. BR27 decreased the 16:0, 18:1 and 18:2 and increased the 18:3 fatty acid content. At 5°C, BR27 (100 nM) generally did not influence the fatty acid composition of PL. In case of digalactosyl diacylglycerols and monogalactosyl diacylglycerols, the influence of BR27 on the fatty acid composition is ambiguous but still depends on temperature.  相似文献   

12.
Cyanobacteria desaturate fatty acids in the membrane lipids in response to decrease in temperature. We examined the changes in lipid and fatty acid composition in the thermophilic cyanobacterium Synechococcus vulcanus, which is characterized by an optimum growth temperature of 55°C. During temperature acclimation to 45°C or 35°C, the cells synthesized oleic acid at the expense of stearic acid in the membrane lipids. Unlike mesophilic cyanobacteria, S. vulcanus did not show any significant adaptive desaturation in the galactolipids monogalactosyl diacylglycerol and digalactosyl diacylglycerol, that comprise 50% and 30% of total membrane lipids, respectively. The major changes in fatty acid unsaturation were observed in the sulfolipid sulfoquinovosyl diacylglycerol.  相似文献   

13.
Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [(13)C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0-26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host.  相似文献   

14.
The lipid profile of Pleurotus sajor caju was studied in relation to mycelial and sporophore growth and different cultural factors. The growth was characterised by lipid synthesis during mycelial growth and utilisation during sporophore growth. The degree of instauration increased during mycelial growth and decreased during sporophore formation. The fatty acid composition of mycelium and sporophore was similar, linoleic acid (C18:2) being the most dominant acid in both. C:N ratio had a significant (P<0.05) positive effect on mycelial dry weight; however, per cent total lipids was similar. Non-polar lipids became more unsaturated as the temperature was raised from 10° to 25°C and pH from 3.0 to 6.0, but declined when the cultures were aerated. Mycelial dry weight increased significantly (P<0.05) when the liquid medium was supplemented with lipids. In general, fatty acids with carbon chain length C16 and C18 stimulated the growth of mycelium. Supplementation of solid substrate (cotton seed hulls) with safflower oil, soybean oil or rice bran significantly (P<0.05) increased the yield of sporophores. Total lipids and ratio of non-polar to polar lipids were not affected by lipid supplementation.  相似文献   

15.
The total lipid and fatty acid content ofSpirulina platensis UTEX 1928 was 7.2 and 2.2% respectively of cellular dry weight under controlled conditions supporting high growth rates. With increases in irradiance from 170 to 870 μmol photon m?2 s?1, growth rate increased, total lipid decreased, and fatty acid composition was unaffected. At 1411 μmol photon m?2 s?1, total lipid increased slightly and percent composition of the fatty acid gamma linolenic acid increased. Growth and total lipid content ofS. platensis were affected by changes in growth temperature from 25 to 38 °C. With increased growth rate, total lipid content increased. This suggests that the storage of carbon increases at temperatures supporting high growth rates. The degree of saturation increased with temperature. Although the percent composition of gamma linolenic acid was higher at lower growth temperature, production was still primarily a function of growth rate. The effect of temperature on fatty acid content and degree of saturation was of secondary importance. Nitrogen starvation increased total lipid content but decreased fatty acid content as a percentage of dry weight; composition of the fatty acids was unaffected. N-starvation appeared to suspend synthesis of long chain fatty acids inS. platensis, suggesting that some other compound stores fixed carbon when nitrogen is limiting. It was concluded that fatty acid production inS. platensis is maximized by optimizing culture conditions for growth.  相似文献   

16.
Low concentrations of fatty acids inhibited initial Ca uptake by sarcoplasmic reticulum vesicles, the extent of inhibition varying with chain length and unsaturation in a series of C14–C20 fatty acids. Oleic acid was a more potent inhibitor of initial Ca uptake than stearic acid at 25°C, whereas at 5°C there was less difference between the inhibitory effects of low concentrations of these fatty acids. When the fatty acids were added later, during the phase of spontaneous Ca release that follows Ca uptake in reactions carried out at 25°C, 1–4 μM oleic and stearic acids caused Ca content to increase. This effect was due to marked inhibition of Ca efflux and slight stimulation of Ca influx. At concentrations of >4 μM, both fatty acids inhibited the Ca influx that occurs during spontaneous Ca release; in the case of oleic acid, this inhibition resembled that of initial Ca uptake at 5°C. The different effects of fatty acids at various times during Ca uptake reactions may be explained in part if alterations in the physical state of the membranes occur during the transition from the phase of initial Ca uptake to that of spontaneous Ca release.  相似文献   

17.
The shrimp Palaemon serratus was acclimatized at 9°, 15°, 18° and 25°, the lipid and fatty acids composition of the abdominal muscle show important variations. In relation to wet weight, total lipid level and polyunsaturated fatty acids (18:2ω6; 20:5ω3; 20:3ω6; 22:6ω3), show an inverse relationship with temperature. On the other hand, an increase of fatty acid content in relation to total lipids is observed as temperature increases. Some mono-unsaturated fatty acids have a polyunsaturated-like behaviour, others a saturated-like behaviour.  相似文献   

18.
Bacillus subtilis synthesizes, almost exclusively, saturated fatty acids, when grown at 37° C. When cultures were transferred from 37° C to 20° C, a chloramphenicol- and rifampicin-sensitive synthesis of a C-16 unsaturated fatty acid was observed. Synthesis of this compound reached a plateau after 5 h at 20° C, reaching levels of 20% of the total fatty acid content. [14C]-labelled fatty acids attached as thioesters to acyl-carriers compounds, such as coenzyme A (CoA) or acyl-carrier protein (ACP) synthesized de novo by glycerol-requiring auxotrophs deprived of glycerol to arrest phospholipid synthesis, could not be desaturated at 20° C. Desaturation of these fatty acids was readily observed when glycerol was restored to the cultures allowing resumption of transfer of acyl-moieties from acyl-thioesters to phospholipid. It was also observed that depletion of the pools of CoA and ACP by starvation of pantothenate auxotrophs had no effect on the observed synthesis of unsaturated fatty acid at 20° C. The overall results indicate that synthesis of unsaturated fatty acids in B. subtilis is a cold-inducible process and that phospholipids are obligate intermediates in this fatty acid desaturation pathway.  相似文献   

19.
Tobacco cell suspensions were grown under controlled conditions to determine whether temperature aftected the fatty acid pattern of the cellular lipids. At any temperature ranging between 17° and 35°, the total fatty acid content and the levels of fatty acids or individual lipids varied during the growth period, The optimum temperature for lipid biosynthesis and polyunsaturated fatty acid accumulation was between 20° and 26°. Increase in the level of polyunsaturated fatty acids was associated with lower temperatures during the active cell division period.  相似文献   

20.
Rabbit zygotes were tested for their ability to sequester radiolabeled acetate, oleate, and arachidonate in intracellular lipid. Radiolabeled arachidonic acid was concentrated 170 ± 28-fold (mean ± SEM) and oleic acid was concentrated 105 ± 26-fold in zygotic lipids during 6 hr of culture when compared with the initial concentrations in culture medium. Acetate was not concentrated into lipids by cultured zygotes. Both long chain fatty acids were incorporated mainly as triglyceride. Polydimethylsiloxane fluid, used to cover the microdroplets of medium during culture, demonstrated lipophilic properties. This characteristic was utilized to indirectly transfer lipids to culture medium, permitting examination only of lipoidal properties of test extracts on embryonal development. For rabbit zygotes, blood plasma extract was detrimental and whole blood extract was beneficial for embryonal cleavage rates during the first 24 hr of culture. A higher proportion of mouse zygotes developed to blastocysts when cultured in modified Ham's F-10 medium compared to BMOC medium, and this difference was negated by inclusion of a lipid extract prepared from rabbit oviductal fluid in the culture system. Comparison of fatty acid analyses of the lipid extracts with development rates of zygotes suggests that modified rates of embryo development may be associated with ratios of individual fatty acids presented to the culture medium rather than with the presence of any single fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号