首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article reviews some of the neuropharmacology of the dopamine (DA)-containing small intensely fluorescent cells of sympathetic ganglia. The major metabolite of DA found in the ganglia is 3,4-dihydroxyphenylacetic acid (DOPAC). DOPAC content appears to be a direct reflection of DA synthesis. DA synthesis can be enhanced by muscarinic agonists and diminished by muscarinic antagonists. Neuroleptic drugs stimulate DA synthesis in the ganglion, which suggests that a local negative neuronal feedback loop might operate within the ganglion. There may be a correlation between deficient DA synthesis in spontaneous hypertensive rats and the development of hypertension. It is possible that some of the peripheral side effects of drugs that act on dopaminergic neurons in the brain might originate from the drugs' action on peripheral dopaminergic neuronal systems such as the sympathetic ganglion.  相似文献   

2.
Summary The vascular system in the inferior mesenteric ganglion of the guinea pig was studied to clarify the transport pathway of transmitters released by the small intensely fluorescent (SIF) cells to the principal ganglionic neurons. Reconstruction of about 1500 1-m-thick serial sections of the ganglion demonstrated its portal system. SIF cells were tightly packed and formed two or three clusters under the capsule of the ganglion. Branches from the inferior mesenteric artery ran directly toward these clusters and broke up into a number of coiled and looped sinusoid capillaries among the SIF cells. They then drained into a large sinus surrounding the clusters in the ganglion. Capillaries were derived from this sinus and ramified among the principal ganglionic neurons. After supplying the neurons, these vessels drained into veins surrounding the ganglion. Therefore, as we observed two distinct groups of capillaries, we call this sinus the intraganglionic portal sinus. All the transmitters secreted from the SIF cells are collected into this intraganglionic portal sinus and are then conveyed through the capillaries to the principal ganglionic neurons.  相似文献   

3.
4.
5.
The sympathetic ganglion contains small intensely fluorescent (SIF) cells derived from the neural crest. We morphologically characterize SIF cells and focus on their relationship with ganglionic cells, preganglionic nerve fibers and sensory nerve endings. SIF cells stained intensely for tyrosine hydroxylase (TH), with a few cells also being immunoreactive for dopamine β-hydroxylase (DBH). Vesicular acetylcholine transporter (VAChT)-immunoreactive puncta were distributed around some clusters of SIF cells, whereas some SIF cells closely abutted DBH-immunoreactive ganglionic cells. SIF cells contained bassoon-immunoreactive products beneath the cell membrane at the attachments and on opposite sites to the ganglionic cells. Ganglion neurons and SIF cells were immunoreactive to dopamine D2 receptors. Immunohistochemistry for P2X3 revealed ramified nerve endings with P2X3 immunoreactivity around SIF cells. Triple-labeling for P2X3, TH and VAChT allowed the classification of SIF cells into three types based on their innervation: (1) with only VAChT-immunoreactive puncta, (2) with only P2X3-immunoreactive nerve endings, (3) with both P2X3-immunoreactive nerve endings and VAChT-immunoreactive puncta. The results of retrograde tracing with fast blue dye indicated that most of these nerve endings originated from the petrosal ganglion. Thus, SIF cells in the superior cervical ganglion are innervated by preganglionic fibers and glossopharyngeal sensory nerve endings and can be classified into three types. SIF cells might modulate sympathetic activity in the superior cervical ganglion.  相似文献   

6.
In our experiments we observed the relationship of the blood vessels to the small, intensely fluorescent cells (SIF cells) in the lower mesenteric ganglion of the cat. We injected the solution of Evan's blue into the ganglia and processed them with the fluorescent histochemical method by Falck and Hillarp. We observed that the SIF cells are placed in the ganglia closely to the blood vessels or closely round them. When observing lager groups of SIF cells placed at the edge of the ganglia a dense network of the blood vessels was observed among these cells.  相似文献   

7.
Summary The localization in the superior cervical ganglia (SCG) of small, intensely fluorescent (SIF) cells and of principal nerve (PN) cells innervating the pineal gland was examined in adult male Sprague-Dawley rats. PN cells were demonstrated by means of the retrograde neuron-tracing method using the fluorescent tracer Fluoro-Gold (FG) injected into the pineal gland. SIF cells were visualized by the formaldehyde-induced fluorescence method. Twentynine percent of the FG-labeled PN cells were found closely associated with SIF cells. In the rostral half of the ganglion, 43% of the SIF cells were situated in juxtaposition to one or several labeled neurons. The possible influence of SIF cells on the regulation of pineal metabolism is discussed with respect to their role as both local endocrine cells and interneurons.  相似文献   

8.
9.
Summary Fluorescence and electron microscopy have been used to study the distribution of noradrenergic nerves in the smooth muscle of the cat urinary bladder. Using the former technique, relatively few fluorescent noradrenergic nerves were observed in the body and fundus, while a rich plexus occurred adjacent to muscle cells of the bladder neck. The trigone could not be distinguished neuromorphologically from detrusor muscle in this region. Electron microscopy showed that the majority of noradrenergic terminals in the body and fundus were associated with presumptive cholinergic axons, while in the bladder neck noradrenergic terminals formed typical neuroeffector relationships with individual smooth muscle cells.Numerous ganglia occurred both in the adventitia and among the smooth muscle bundles, particularly in the bladder neck. The majority of the nerve cell bodies were non-fluorescent, although many contained bright orange autofluorescent granules, believed to be lysosomes. A small minority of ganglion cells were associated with fluorescent noradrenergic nerve terminals, thereby providing structural evidence for limited intraganglionic inhibition. In addition, occasional groups of small intensely fluorescent (SIF) cells were observed in some intramural ganglia and these were subsequently identified in the electron microscope. The possibility that these cells may provide a second inhibitory influence on bladder activity was considered.  相似文献   

10.
Summary Amine-containing small intensely fluorescent (SIF) cells are ubiquitous in vertebrate sympathetic ganglia and, in some species, SIF cells have been identified as interneurons. The hypothesis proposed in this study is that SIF cells in superior sympathetic ganglia of the guinea pig function as interneurons, with efferent connections characteristic for the species. Fluorescence (catecholamine) microscopy and 5-hydroxydopamine marker for electron microscopy were used to study SIF cells, their processes and connections in this ganglion.Brightly fluorescent fibers were seen attached to virtually all SIF cells, and were of two types. The first type, single or arranged in cords, interconnected elements of the SIF-cell system; these apparent linkages joined individual SIF cells as well as adjacent clusters. The electron-microscopic evidence for synaptic contacts between SIF cells warrants the claim that integrated action is a presumed function of these elements. The second type of SIF-cell process was generally of greater length. These individual, branching fibers made presumed connections with dendrites of most principal ganglionic neurons. This arrangement suggested by histofluorescence preparations was confirmed by electron microscopy to involve synaptic connections, and the postsynaptic element was shown to be continuous with the perikaryon of the principal ganglionic neuron. Ultrastructural evidence that collections of dense-cored vesicles occur within processes of both principal ganglionic neurons and SIF cells, in proximity to unsheathed portions of plasma membrane, leads to the conclusion that interstitial diffusion of catecholamine from both may occur; the finding of SIF cell processes adjacent to fenestrated blood vessels suggests that catecholamine may also be transported through capillaries.  相似文献   

11.
Summary Coexistence of peptides in the small intensely fluorescent cells was demonstrated by immunocytochemistry for met-enkephalin-Arg-Gly-Leu, vasoactive intestinal polypeptide, somatostatin, neuropeptide Y and dynorphin. In the extreme example, a single cell was immunoreactive to all 5 peptides examined. Four peptides coexisted in 8% and three peptides in 13% of SIF cells. In 10% of SIF cells no peptide immunoreactivity could be detected. The most prevalent peptide was met-enkephalin (in 46% of cells), then vasoactive intestinal polypeptide (45%), somatostatin (39%), neuropeptide Y (31%) and dynorphin (24%). Met-enkephalin and vasoactive intestinal polypeptide coexisted most commonly (25%).  相似文献   

12.
Ma B  Yu LH  Fan J  Ni X  Burnstock G 《Life sciences》2008,83(5-6):185-191
  相似文献   

13.
 Small intensely fluorescent (SIF) cells are paraganglionic cells derived from sympathicoblasts which may serve as interneurons, endo-/paracrine cells or arterial chemoreceptors within sympathetic ganglia. Like paraganglionic cells of other locations, e.g., carotid body glomus cells, they are responsive to hypoxia. Recent studies on glomus cells and other hypoxia-sensing cells suggested the involvement of a b 558 -type cytochrome and intracellular generation of H2O2 in the process of oxygen sensing. In the present study, we demonstrate the occurrence of the small subunit of cytochrome b 558 , p22phox, in SIF cells of guinea-pig sympathetic ganglia by immunohistochemistry using two different antisera. H2O2 production was monitored in explanted intact superior cervical ganglia of 2-day-old rats by confocal laser scanning analysis of rhodamine 123 fluorescence generated due to oxidation of dihydrorhodamine 123 by H2O2. Using this technique, SIF cell clusters appeared as sites of highest H2O2 production within the ganglia. Thus, SIF cells exhibit two key features of an oxidase system generating reactive oxygen species. This may be involved in the proposed chain of events in oxygen sensing, but alternative cellular functions of this system have also to be considered. Accepted: 19 September 1996  相似文献   

14.
Dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and norepinephrine (NE) are present in the rat cardiovascular system. All of the catechols can be partially depleted by administering 6-hydroxydopamine (6-HODA). When animals are pretreated with desipramine before 6-HODA, there is a selective partial depletion of DA and DOPAC. NE can be partially depleted with minimal effects on DA and DOPAC by administering N-(2-chloroethyl)N-ethyl-2-bromobenzylamine (DSP-4). These results are consistent with the hypothesis that independent dopaminergic and noradrenergic elements are present in the rat cardiovascular system and that DA is not solely a precursor for NE. NE, DA and DOPAC were assayed in human vessels and the pattern of distribution of the catechols is consistent with the results reported for animals.  相似文献   

15.
The cellular mechanisms that underlie formation of an autonomic ganglion have been investigated by studying the formation of the cardiac ganglion of the frog. Analysis of the genesis of neurons with [3H]thymidine autoradiography revealed that neuronal precursors do not divide via a “stem cell lineage” but rather divide exponentially, such that both daughter cells either re-enter the mitotic cycle or differentiate. Neurogenesis in this autonomic ganglion is prolonged, beginning during the second day after fertilization and continuing for at least 2 weeks. The use of acetylcholinesterase (AChE) as a neuronal marker showed that differentiated neurons start condensing in their target 1.5 days after the first neurons are born. Neurons accumulate, concomitant with neurogenesis, at a constant rate of approximately six neurons per day. Transplantation and organ culture demonstrated that immature neurons are present well before definitive expression of the mature phenotype and that their initial expression does not depend upon maintained contact by preganglionic axons.  相似文献   

16.
This comparative study of the number of SIF cells in the ganglions of the rat, cat, rabbit, mouse and hamster has confirmed that the mean number of SIF cells in the same ganglion of different species varies greatly, for instance in the superior cervical ganglion (SCG) of the rat and the cat, in the stellate ganglion of the cat and the mouse, or in the inferior mesenteric ganglion of the hamster and the other species. There is also considerable variability among individuals of the same animal species. In the SCG, the only ganglion for which there are data on the number of neurons, the ratio of SIF cells to neurons is around 1% in the rat, 0.2% in the rabbit, 0.3% in the mouse and 0.05% in the cat, i.e. a twenty-fold difference between the cat and the rat. Williams et al. (1975) distinguished type 1 SIF cells, corresponding to interneurons, from type 2, which are purely endocrine cells. Type 2 appears to be predominant in all ganglia, except the rabbit SCG where type 1 is highly predominant, and in all species, except the rat, in which this distinction is not applicable. The possible implications of these data on ganglionic functioning are discussed.  相似文献   

17.
Synopsis It is known that hydrocortisone causes a great increase in the number of small intensely fluorescent (SIF) cells in the sympathetic ganglia when injected into newborn rats. The effect of hydrocortisone on nervous tissuein vitro has not been studied previously.Pieces of newborn rat sympathetic ganglia were cultivated in Rose chambers. Hydrocortisone was dissolved in the medium in concentrations of 1–9 mg/l. Both control and hydrocortisone-containing cultures were examined daily by phase-contrast microscopy, and the catecholamines were demonstrated histochemically by formaldehyde-induced fluorescence after 7 days in culture.All cultures showed outgrowths of axons and supporting cells elements, although these were less extensive in the groups of cultures with hydrocortisone. After a week, SIF cells with a green fluorescence were observed in the control explants. In all cultures with hydrocortisone, a concentration-dependent increase was observed in the fluorescence intensity and the number of the SIF cells in the explant; numerous SIF cells were also seen in the outgrowth. Some SIF cells showed processes and the longest processes were seen in cultures with the highest concentration of hydrocortisone.It is concluded that hydrocortisone causes an increased synthesis of catecholamines in the SIF cellsin vitro, and an increase in their number by affecting either their division or their differentiation from a more immature form, or both. This effect was a direct one and not mediated by any system other than the ganglion itself. Induction of enzyme synthesis by hydrocortisone is proposed as an explanation of the increase in catecholamine concentration.University of Melbourne Senior Research Fellow, September 1971-August 1972Sunshine Foundation and Rowden White Trust Overseas Research Fellow in the University on Melbourne, September 1971-August 1972  相似文献   

18.
Summary Large numbers of nuclear inclusions have been found in the nerve cells of the sphenopalatine ganglia of six healthy adult dogs. Their morphological characteristics are similar to those previously described elsewhere. The presence of simple and granular bodies in normal cells seems to support the hypothesis that these nuclear structures might be considered as normal nuclear organelles related to cellular metabolic activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号