共查询到20条相似文献,搜索用时 15 毫秒
1.
Richard S. Jope 《Journal of neurochemistry》1981,36(5):1712-1721
Abstract: The turnover of acetylcholine (ACh) in rat brain synaptosomes and its compartmentation in the labile bound and stable bound pools were investigated. The P2 fraction from rat brain was subjected to three sequential incubations, each terminated by centrifugation followed by determination of ACh concentrations by gas chromatography-mass spectrometry (GCMS): (1) Depletion phase: Incubation of synaptosomes at 37°C for 10 min in Na+ -free buffer containing 35 mM-KCl reduced the content of both labile bound and stable bound ACh by 40%. (2) Synthesis phase: Incubation at 37°C with 2 μ M -[2 H4 ]choline resulted in accumulation of labeled and unlabeled ACh in both compartments. Addition of an anticholinesterase had little effect on stable bound ACh but greatly increased the content of labile bound ACh. This excess accumulated ACh was probably due to inhibition of intracellular acetylcholinesterase (AChE), because negligible uptake of ACh from the medium was observed. The effects on ACh synthesis of altered cation concentrations and metabolic inhibitors were examined. (3) Release phase: The tissue was incubated in the presence of 35 mM-KCl, 40 μM-paraoxon, and 20 μM-hemicholinium-3 (HC-3) (to inhibit further synthesis of ACh). Measurements of the compartmental localization of ACh at several time points indicated that ACh was being released from the labile bound fraction. In support of this conclusion, 20 mM-Mg2+ reduced ACh release and increased the labile bound ACh concentration. 相似文献
2.
Inhibition by Quinacrine of Depolarization-Induced Acetylcholine Release and Calcium Influx in Rat Brain Cortical Synaptosomes 总被引:3,自引:2,他引:1
The effects of quinacrine on depolarization-induced [3H]acetylcholine (ACh) release and 45Ca2+ influx were examined in rat brain cortical synaptosomes. Quinacrine significantly reduced the stimulated release of [3H]ACh by high K+ and veratridine without affecting the spontaneous efflux from the preloaded synaptosomes. Quinacrine had no effect on ionophore A23187-induced release of [3H]ACh from the synaptosomes. Quinacrine (100 μM) markedly diminished the stimulated Ca2+ influx by veratridine and high K+ but not that by “Na+-free.” Trifluoperazine, a potent calmodulin antagonist, inhibited both Ca2+ influx and ACh release induced by the depolarizing agents. Inhibitory potencies of the two drugs on ACh release and Ca2+ influx were compared with the antagonism of calmodulin by two drugs, suggesting that the inhibition of depolarization-induced Ca2+ influx and ACh release by these drugs could not be explained by the antagonism of calmodulin. 相似文献
3.
Temporal Characteristics of Potassium-Stimulated Acetylcholine Release and Inactivation of Calcium Influx in Rat Brain Synaptosomes 总被引:1,自引:9,他引:1
Abstract: The time course of Ca2+ -dependent [3 H]acetylcholine ([3 H]ACh) release and inactivation of 45 Ca2+ entry were examined in rat brain synaptosomes depolarized by 45 m M [K+ ]o . Under conditions where the intrasynaptosomal stores of releasable [3 H]ACh were neither exhausted nor replenished in the course of stimulation, the K+ -evoked release consisted of a major (40% of the releasable [3 H]ACh pool), rapidly terminating phase ( t 1/2 = 17.8 s), and a subsequent, slow efflux that could be detected only during a prolonged, maintained depolarization. The time course of inactivation of K+ -stimulated Ca2+ entry suggests the presence of fast-inactivating, slow-inactivating, and noninactivating, or very slowly inactivating, components. The fast-inactivating component of the K+ -stimulated Ca2+ entry into synaptosomes appears to be responsible for the rapidly terminating phase of transmitter release during the first 60 s of K+ stimulus. The noninactivating Ca2+ entry may account for the slow phase of transmitter release. These results indicate that under conditions of maintained depolarization of synaptosomes by high [K+ ]o the time course and the amount of transmitter released may be a function of the kinetics of inactivation of the voltage-dependent Ca channels. 相似文献
4.
Simultaneous Release of Acetylcholine and ATP from Stimulated Cholinergic Synaptosomes 总被引:6,自引:6,他引:6
Abstract: The release of acetylcholine (ACh) and ATP from pure cholinergic synaptosomes isolated from the electric organ of Torpedo was studied in the same perfused sample. A presynaptic ATP release was demonstrated either by depolarization with KCl or after the action of a venom extracted from the annelid Glycera convoluta (GV). The release of ATP exhibited similar kinetics to that of ACh release and was therefore probably closely related to the latter. The ACh/ATP ratio in perfusates after KCl depolarization was 45; this was much higher than the ACh/ATP ratio in cholinergic synaptic vesicles, which was 5. The ACh/ATP ratio released after the action of GV was also higher than that of synaptic vesicles. These differences are discussed. The stoichiometry of ACh and ATP release is not consistent with the view that the whole synaptic vesicle content is released by exocytosis after KCl depolarization, as is the case for chromatin cells in the adrenal medulla. 相似文献
5.
The rapid kinetics of spontaneous and evoked [3H]acetylcholine efflux from synaptosomes was investigated using the technique of rapid superfusion. Synaptosomes were isolated from whole rat brain and the intraterminal pool of acetylcholine was radiolabeled by preincubation with [3H]choline. Synaptosomes were retained within the superfusion system on filter disks and superfused with Krebs-bicarbonate buffer, pH 7.4, at flow rates of 0.3-0.5 ml/s. These experimental conditions provided a mixing half-life of 119 ms and efficiency of superfusion of greater than 85%. The kinetics of tritium efflux was followed on the second and subsecond time scales by collection of serial 4.8-s and 50-ms samples for a total of 67.2 and 1.0 s, respectively. Superfusion for 48 s with isoosmotic Krebs buffer containing 10, 20, 30, 50, 75, and 100 mM potassium ion stimulated concentration-dependent tritium release. All of potassium-evoked release, but only 17% of spontaneous release, was calcium-dependent. Kinetic analysis of net (total minus spontaneous) potassium-stimulated release revealed a single calcium-dependent component of release that fit a single exponential function with a half-life of 12.7 s. Analysis of the area under the tritium efflux curves observed on the millisecond time scale revealed that 0.111, 0.550, and 0.614% net tritium release was evoked by superfusion for 750 ms with isoosmotic buffer containing 20, 50, and 100 mM KCl, respectively. Consistent with the results observed on the second time scale, a small fraction of spontaneous release and all of potassium-evoked release observed on the millisecond time scale were calcium-dependent. These data indicate that the technique of rapid superfusion can be utilized for the direct investigation of spontaneous and evoked [3H]acetylcholine release, as well as the factors that regulate this release from brain synaptosomes on the second and millisecond time scales. 相似文献
6.
Aging Decreases the Sensitivity of Rat Cortical Synaptosomes to Calcium Ionophore-Induced Acetylcholine Release 总被引:2,自引:2,他引:0
The capacity of calcium ions to trigger acetylcholine release was studied in cerebral cortical synaptosomes from adult (6-month-old) and senescent (24-month-old) rats, using a calcium ionophore, A23187, that bypasses voltage-sensitive calcium channels. The potency but not the efficacy of the A23187 was reduced with respect to releasing acetylcholine (ACh) in the aged animals. There was no age-related difference in the synthesis of ACh or potency of the ionophore with respect to increasing 45calcium uptake. These results suggest that aging reduces the sensitivity of cerebral cortical nerve terminals to calcium-triggered ACh-release. 相似文献
7.
Richard D. Crosland Joseph V. Martin William O. McClure 《Journal of neurochemistry》1983,40(3):681-687
Abstract: The effect of increasing the cytoplasmic levels of various divalent cations on the release of [3H]acetylcholine ([3H]ACh) from synaptosomes was investigated. Synaptosomes prepared from rat brain and prelabeled with [3H]choline were incubated with liposomes containing Mg2+, Ca2+, Mn2+, Co2+, Sr2+, or Ba2+. This treatment allows the transfer of the aqueous contents of the liposomes to the cytoplasm of the synaptosomes. The efflux of radioactivity subsequent to this treatment was measured, and the relative proportions of [3H]ACh and [3H]choline were determined. The release of radioactivity from synaptosomes incubated with liposomes containing Mg2+, Mn2+, or Co2+ was not altered when compared with synaptosomes incubated either without liposomes or with liposomes containing isotonic K+/Na+. Synaptosomes incubated with liposomes containing Ca2+, Sr2+, or Ba2+, however, released significantly more radioactivity than did controls. Moreover, the released radioactivity consisted almost entirely of [3H]ACh. Liposomes containing either Ca2+ or Sr2+ were equally effective in promoting the release of [3H]ACh from synaptosomes, whereas liposomes containing Ba2+ were 2.5 times more effective in promoting the release of [3H]ACh than were liposomes containing either Ca2+ or Sr2+. Since liposomes introduce their aqueous contents into cytoplasm via a mechanism not involving plasma membrane channels, the increased release of [3H]ACh caused by liposomes containing Ca2+, Sr2+, or Ba2+ is attributable to an increase in the intrasynaptosomal concentration of these ions, and not to their passage through calcium channels. 相似文献
8.
Jose Sanchez-Prieto Stephen A. K. Harvey John B. Clark 《Journal of neurochemistry》1987,48(4):1278-1284
Acetylcholine and choline release from rat brain synaptosomes have been measured using a chemiluminescent technique under a variety of conditions set up to mimic anoxic insult, including conditions of low pH (6.2) and the presence of lactate plus pyruvate as substrate. Lactate plus pyruvate as substrate consistently gave higher respiration rates than glucose alone, but with either substrate (glucose or lactate plus pyruvate) the omission of Ca2+ caused an increase in respiration whereas a low pH caused a decreased respiration. Acetylcholine release under control conditions (glucose, pH 7.4) was Ca2+-dependent, stimulated by high K+ concentrations, and decreased significantly during anoxia but recovered fully after a period of postanoxic oxygenation. Low pH (6.2) suppressed K+ stimulation of acetylcholine release, and after a period of anoxia at low pH the recovery of acetylcholine release was only partial. With lactate plus pyruvate as substrate, the effects of anoxia and/or low pH on acetylcholine release and its subsequent recovery were exacerbated. Choline release from synaptosomes, however, was not affected by anoxic/ionic conditions in the same way as acetylcholine release. At low pH (6.2) there was a marked reduction in choline release both under aerobic and anoxic conditions. These results suggest that acetylcholine release per se from the nerve is very sensitive to anoxic insult and that the low pH occurring during anoxia may be an important contributory factor. 相似文献
9.
Abstract: Synaptosomes from normoxic and hypoxic rats were incubated aerobically in the presence and absence of veratridine. In the absence of veratridine, no significant difference was observed between the two types of preparation regarding either ATP/ADP ratio or 14 CO2 or [14 C]acetylcholine synthesis from D-[U-14 C]glucose. However, in the presence of veratridine, significant reductions in the output of 14 CO2 and [14 C]acetylcholine by synaptosomes from hypoxic rats were apparent. It was concluded that irreversible metabolic lesions occur at the synapse as a result of hypoxia, which are apparent only when the metabolism of the preparation is accelerated to a level comparable with the maximal rate occurring in vivo. The presence of such lesions is further evidenced by the significant reductions in ATP/ADP ratio, 14 CO2 output, and [14 C]acetylcholine synthesis that occur in synaptosomes from hypoxic rats made anoxic in vitro and permitted to recover. Such decreases are not seen when synaptosomes from normoxic rats are similarly treated. 相似文献
10.
Diacylglycerol-Induced Stimulation of Neurotransmitter Release from Rat Brain Striatal Synaptosomes 总被引:3,自引:2,他引:1
These studies were undertaken to test the hypothesis that alterations in phosphatidylinositol metabolism can modulate neurotransmitter release in the central nervous system. The effects of 1,2-diacylglycerols (DAGs) on dopamine release in the rat central nervous system were determined by measuring dopamine release from rat striatal synaptosomes in response to two DAGs (sn-1,2-dioctanoylglycerol and 1-oleoyl-2-acetylglycerol) that can activate protein kinase C and one DAG (deoxydioctanoylglycerol) that does not activate this kinase. Dioctanoylglycerol and 1-oleoyl-2-acetylglycerol, at a concentration of 50 micrograms/ml, stimulated the release of labeled dopamine from striatal synaptosomes by 35-50 and 17%, respectively. Dioctanoylglycerol-induced release was also demonstrated for endogenous dopamine. In contrast, deoxydioctanoylglycerol (50 micrograms/ml) did not stimulate dopamine release. Dioctanoylglycerol-induced dopamine release was independent of external calcium concentration, indicating a utilization of internal calcium stores. Dioctanoylglycerol (50 micrograms/ml) also produced a 38% increase in labeled serotonin release from striatal synaptosomes. The addition of dioctanoylglycerol to the striatal supernatant fraction increased protein kinase C activity. These results are consistent with the concept that an increase in phosphatidylinositol metabolism can stimulate neurotransmitter release in the central nervous system via an increase in DAG concentration. The data suggest an involvement of protein kinase C in the DAG-induced release, but other sites for DAG action are also possible. 相似文献
11.
Phorbol Ester Enhancement of Neurotransmitter Release from Rat Brain Synaptosomes 总被引:11,自引:19,他引:11
Robert A. Nichols John W. Haycock James K. T. Wang Paul Greengard 《Journal of neurochemistry》1987,48(2):615-621
Neurotransmitter release from rat brain synaptosomes was measured following pretreatment with various phorbol esters. Ca2+-dependent, evoked neurotransmitter release was increased by phorbol esters that were active in stimulating protein kinase C. Protein kinase C activation was demonstrated by increased incorporation of 32P into 87-kilodalton phosphoprotein, a specific substrate for that kinase. Inactive phorbol esters had no effect on neurotransmitter release or on the phosphorylation of 87-kilodalton phosphoprotein. The increased release was observed in either crude cortical synaptosomal fractions (P2) or purified cortical synaptosomal fractions. The enhancement was found for all neurotransmitters (norepinephrine, acetylcholine, gamma-aminobutyric acid, serotonin, dopamine, and aspartate), all brain regions (cerebral cortex, hippocampus, and corpus striatum), and all secretagogues (elevated extracellular K+ level, veratridine, or A23187) examined. It was also observed at all calcium concentrations present during stimulation of release. The phorbol ester enhancement of Ca2+-dependent release occurred whether or not calcium was present during pretreatment. These results indicate that stimulation of protein kinase C leads to an enhanced sensitivity of the stimulus-secretion coupling processes to calcium within the nerve terminal. The results support the possibility that presynaptic activation of protein kinase C modulates nerve terminal neurotransmitter release in the CNS. 相似文献
12.
The effect of lead ions on the release of acetylcholine (ACh) was investigated in intact and digitonin-permeabilized rat cerebrocortical synaptosomes that had been prelabeled with [3H]choline. Release of ACh was inferred from the release of total 3H label or by determination of [3H]ACh. Application of 1 microM Pb2+ to intact synaptosomes in Ca2(+)-deficient medium induced 3H release, which was enhanced by K+ depolarization. This suggests that entry of Pb2+ into synaptosomes and Pb2(+)-induced ACh release can be augmented by activation of the voltage-gated Ca2+ channels in nerve terminals. The lead-induced release of [3H]ACh was blocked by treatment of synaptosomes with vesamicol, which prevents uptake of ACh into synaptic vesicles without affecting its synthesis in the synaptoplasm. This indicates that Pb2+ selectively activates the release of a vesicular fraction of the transmitter with little or no effect on the leakage of cytoplasmic ACh. Application of 1-50 nM (EC50 congruent to 4 nM) free Pb2+ to digitonin-permeabilized synaptosomes elicited release of 3H label that was comparable with the release induced by 0.2-5 microM (EC50 congruent to 0.5 microM) free Ca2+. This suggests that Pb2+ triggers transmitter exocytosis directly and that it is a some 100 times more effective activator of exocytosis than is the natural agonist Ca2+. 相似文献
13.
Zipora Pittel Eliahu Heldman Rachel Rubinstein Sasson Cohen 《Journal of neurochemistry》1990,55(2):665-672
The effect of McN-A-343 and oxotremorine on acetylcholine (ACh) release and choline (Ch) transport was studied in corticocerebral synaptosomes of the guinea pig. The synaptosomes were preloaded with [3H]Ch after treatment with the irreversible cholinesterase inhibitor, diisopropyl fluorophosphate, and then tested for their ability to release isotope-labeled ACh and Ch in the presence and absence of these agents. The kinetics of release were determined at the resting state (basal release) and in the presence of 50 mM K+. Under either condition, McN-A-343 enhanced the release of isotope-labeled ACh, whereas oxotremorine inhibited the K(+)-evoked release but had no effect on the basal release. The enhancing effect of McN-A-343 on basal ACh release was fully blocked by the selective M1 muscarinic antagonist, pirenzepine (100 nM). In contrast to its enhancing effect on ACh release, McN-A-343 potently inhibited Ch efflux as well as Ch influx. These effects were not blocked by atropine, a nonselective muscarinic antagonist. Oxotremorine had no effect on Ch transport. Binding studies showed that McN-A-343 was 3.6-fold more potent in displacing radiolabeled quinuclidinyl benzilate from cerebral cortex muscarinic receptors (mostly M1 subtype) than from cerebellar receptors (mostly M2 subtype), whereas oxotremorine was 2.6-fold more potent in the cerebellum. The displacements of radio-labeled pirenzepine and cis-dioxolane confirmed the M1 subtype preference of McN-A-343 and the M2 subtype preference of oxotremorine.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
Synaptosome preparations were utilized to characterize the release and compartmentalization of immunoreactive insulin (IRI) in the adult rat brain. Depolarization of synaptosomes by elevation of the external potassium ion concentration elicited release of IRI from the synaptosomes into the incubation medium. This release was reduced or eliminated under three conditions known to prevent depolarization-induced Ca2+ flux: elevating the external MgCl2, adding CoCl2, and eliminating external Ca2+ with EGTA. Depolarization of synaptosomes by veratridine also elicited release of synaptosomal IRI. This release was inhibited by tetrodotoxin. The amount of IRI released under depolarizing conditions represented 3-7% of that contained in the synaptosomes. High levels of IRI release also were observed upon removal of external Na+ to allow depolarization-independent influx of external Ca2+ into the synaptosomal compartment. The Ca2+ dependency of synaptosomal IRI release suggests IRI is stored in the adult rat brain in synaptic vesicles within nerve endings from which it can be mobilized by exocytosis in association with neural activity. 相似文献
15.
Oxygen Dependence of Glucose and Acetylcholine Metabolism in Slices and Synaptosomes from Rat Brain 总被引:2,自引:10,他引:2
Abstract: Previous studies have shown that a reduction in the O2 tension of the blood from 120 torr to 57 torr (hypoxic hypoxia) decreases brain acetylcholine (ACh) synthesis. To determine if this decrease is due to a direct impairment of ACh metabolism or to an indirect effect mediated by other neurotransmitter systems, we studied ACh formation in rat brain slices and synaptosomes. At O2 tensions ranging from 760 to less than 1 torr, 14CO2 production and [14C]ACh synthesis from [U-14C]glucose, the levels of lactate and ATP, and the ATP/ADP ratio were determined. In slices, the first decreases were observed in the rate of 14CO2 production and [14C]ACh synthesis at an O2 tension of 152 torr. The ATP level started to decline at 53–38 torr, and a reduction in the ATP/ADP ratio was first found at and below 19 torr. Lactate formation was maximally stimulated at 38–19 torr. Synaptosomes responded differently than brain slices to reduced O2 tensions. In synaptosomes, 14CO2 production and [14C]ACh synthesis from [U-14C]glucose, the levels of lactate and ATP, and the ATP/ADP ratio were unaltered if a minimum O2 tension of 19 torr was maintained. Despite the difference in sensitivities to decreases in O2 levels, there is a curvilinear relationship between [U-14C]glucose decarboxylation and [14C]ACh synthesis at various O2 tensions for both tissue preparations with a high coefficient of determination (R2= 0.970). The difference in the metabolic sensitivity of slices and synaptosomes to a reduced O2 level may be explained by the greater distance O2 must diffuse in slices. The results are discussed in comparison with hypoxia in vivo. 相似文献
16.
Correlation of Rates of Calcium Entry and Release of Endogenous Norepinephrine in Rat Brain Region Synaptosomes 总被引:6,自引:6,他引:0
Voltage-dependent 45Ca2+ uptake and endogenous norepinephrine (NE) release were measured simultaneously in synaptosomes isolated from rat hypothalamus, brainstem, and cerebellum at 1, 3, 5, 15, and 30 s. In synaptosomes depolarized by 125 mM KCl, 45Ca2+ uptake and NE release exhibited fast and slow components. Rates of NE release and 45Ca2+ uptake were fastest from 0 to 1 s. NE release and 45Ca2+ uptake rates from 1 to 5 s were less than 15% of 0-1 s rates. Both resting (5 mM KCl) and depolarization-induced (125 mM KCl) NE release paralleled 45Ca2+ uptake from 1 to 30 s. Voltage-dependent NE release was approximately 1% and 2% of total synaptosomal NE content at 1- and 30-s measurement intervals, respectively, and did not differ between the three brain regions studied. Calcium and potassium dependence studies showed that NE release was stimulated by increased potassium and that depolarization-induced NE release was dependent on the presence of external calcium. These results show that calcium-dependent NE release from synaptosomes is correlated with calcium entry. Both processes exhibit fast and slow temporal components. 相似文献
17.
The characteristics of the release of endogenous dopamine and noradrenaline from rat brain synaptosomes were studied using HPLC with an electrochemical detector. The spontaneous release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. Also, the high-K+ (30 mM)-evoked release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. From these results, the ratio of the Ca2(+)-dependent component to the total release of noradrenaline seemed to be similar to that of dopamine. On the other hand, 20 microM La3+ or 1 microM diltiazem inhibited both the spontaneous and 30 mM K(+)-evoked release of dopamine by approximately 50-60% but inhibited neither the spontaneous nor the 30 mM K(+)-evoked release of noradrenaline. The K(+)-evoked rise in intrasynaptosomal Ca2+ concentration was mostly blocked in Ca2(+)-free medium or 100 microM La3(+)-containing medium but was only partially blocked by 20 microM La3+ or 1 microM diltiazem. These data indicate alternative possibilities in that the Ca2(+)-dependent release of noradrenaline might be less sensitive to a change of intracellular Ca2+ concentration than that of dopamine and that the calcium channels directly involved in the noradrenaline release may be more resistant to diltiazem and La3+ than those involved in the dopamine release. 相似文献
18.
Continuous Determination by a Chemiluminescent Method of Acetylcholine Release and Compartmentation in Torpedo Electric Organ Synaptosomes 总被引:15,自引:14,他引:1
Abstract: The detection of acetylcholine (ACh) with a chemiluminescent procedure enables one to follow continuously the release of transmitter from stimulated synaptosomes and to study the compartmentation of ACh in resting and active nerve terminals. A compartment of ACh liberated almost entirely by a single freezing and thawing could be directly measured and compared with a compartment of ACh resistant to several cycles of freezing and thawing but liberated by a detergent (60–70% of the total). It is the compartment liberated by freezing and thawing that is reduced when synaptosomes are stimulated. Up to half the total synaptosomal ACh content is readily releasable provided the calcium entry is maintained, or if a strong releasing agent such as the venom of Glycera convoluta is used. In addition, it is shown that synaptosomes contain only negligible amounts of choline, and that the proportion of the two ACh compartments is not influenced by changing extracellular calcium just before their determination. 相似文献
19.
Cholinergic Modulation of the Release of [3 H]Acetylcholine from Synaptosomes of the Myenteric Plexus
Abstract: The purpose of these experiments was to determine if cholinergic agents affected the release of acetylcholine (ACh) from a synaptosomal preparation of the guinea pig ileum myenteric plexus. The synaptosomal preparation was first incubated with the precursor [3 H]choline; subsequently, release of the stored [3 H]ACh was measured. The release was decreased by oxotremorine or exogenous ACh plus hexamethonium and increased by exogenous ACh plus atropine. The nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) evoked release that was inhibited by nicotinic antagonists or muscarinic agonists. Release was stimulated half-maximally by approximately 2 μ m - and maximally by 10 μ m -DMPP. Either in the absence of calcium or at 0°C, DMPP was without effect. The effect of 10 μ m -DMPP was brief, a significant stimulation occurring only within the first 2 min at 37°C. Tetrodotoxin also inhibited excitation by DMPP but not completely. Thus, the release of [3 H]ACh appears to be presynaptically modulated, negatively by muscarinic agonists and positively by nicotinic agonists. 相似文献
20.
Rat brain synaptosomes exhibit calcium-dependent transglutaminase activity. This activity, measured in detergent-treated or sonicated preparations, was six- to sevenfold lower than that in the liver. The synaptosomal transglutaminase was inhibited by various amines and alpha-difluoromethylornithine, compounds known to inhibit activity of this enzyme in other tissues. The inhibitors of transglutaminase induced release of catecholamines, but not of gamma-aminobutyric acid, from synaptosomes both under basal and K+-stimulated conditions. The concentrations of the agents that caused stimulation of catecholamine release were approximately the same as those that inhibited the activity of transglutaminase. Stimulation of release was largely reduced by the withdrawal of calcium from the incubation medium. Inhibitors of transglutaminase had little effect either on the uptakes of neurotransmitters or the amounts of deaminated products of catecholamine degradation released into the medium. It is suggested that a synaptosomal transglutaminase is involved in suppressing vesicular release of catecholamines by resting (nondepolarized) neurons and that this action may also be a part of negative feedback control which prevents excessive transmitter release at the synapse during increased neuronal activity. 相似文献