首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two key components of mammalian heterochromatin that play a structural role in higher order chromatin organization are the heterochromatin protein 1alpha (HP1alpha) and the linker histone H1. Here, we show that these proteins interact in vivo and in vitro through their hinge and C-terminal domains, respectively. The phosphorylation of H1 by CDK2, which is required for efficient cell cycle progression, disrupts this interaction. We propose that phosphorylation of H1 provides a signal for the disassembly of higher order chromatin structures during interphase, independent of histone H3-lysine 9 (H3-K9) methylation, by reducing the affinity of HP1alpha for heterochromatin.  相似文献   

2.
The phosphorylation of heterochromatin protein 1 (HP1) has been previously described in studies of mammals, but the biological implications of this modification remain largely elusive. Here, we show that the N-terminal phosphorylation of HP1α plays a central role in its targeting to chromatin. Recombinant HP1α prepared from mammalian cultured cells exhibited a stronger binding affinity for K9-methylated histone H3 (H3K9me) than that produced in Escherichia coli. Biochemical analyses revealed that HP1α was multiply phosphorylated at N-terminal serine residues (S11-14) in human and mouse cells and that this phosphorylation enhanced HP1α's affinity for H3K9me. Importantly, the N-terminal phosphorylation appeared to facilitate the initial binding of HP1α to H3K9me by mediating the interaction between HP1α and a part of the H3 tail that was distinct from the methylated K9. Unphosphorylatable mutant HP1α exhibited severe heterochromatin localization defects in vivo, and its prolonged expression led to increased chromosomal instability. Our results suggest that HP1α's N-terminal phosphorylation is essential for its proper targeting to heterochromatin and that its binding to the methylated histone tail is achieved by the cooperative action of the chromodomain and neighboring posttranslational modifications.  相似文献   

3.
Quantitative analysis of CUG-BP1 binding to RNA repeats   总被引:2,自引:0,他引:2  
CUG-binding protein 1 (CUG-BP1) is a member of the CUG-BP1 and ETR-3-like factors (CELF) family of RNA-binding proteins, and is involved in myotonic dystrophy type 1 (DM1). Several mRNA targets of CUG-BP1 have been identified, including the insulin receptor, muscle chloride channel, and cardiac troponin T. On the other hand, CUG-BP1 has only a weak affinity for CUG repeats. We conducted quantitative-binding assays to assess CUG-BP1 affinities for several repeat RNAs by surface plasmon resonance (SPR). Although we detected interactions between CUG-BP1 and CUG repeats, other UG-rich sequences actually showed stronger interactions. Binding constants of CUG-BP1 for RNAs indicated that the affinity for UG repeats was far stronger than for CUG repeats. We also found that N-terminal deletion mutant of CUG-BP1 has UG repeat-binding activity in a yeast three-hybrid system, although C-terminal deletion mutant does not. Our data indicates that CUG-BP1 specifically recognized UG repeats, probably through cooperative binding of RNA recognition motifs at both ends of the protein. This is the first report of a binding constant for CUG-BP1 calculated in vitro.  相似文献   

4.
A simple, efficient, and reliable method is demonstrated for cloning long tandem arrays of the 601 nucleosomal positioning sequence. In addition, it is shown that such long arrays can be ligated together in vitro with high efficiency. By combining these two procedures it becomes straightforward to synthesize customized arrays that contain different (or variable) nucleosomal repeat lengths (NRLs) and monosome units bearing chemical modifications such as fluorophores, methyl groups, and reaction sites. This is, therefore, an enabling technology for the in vitro study of chromatin structure and function.  相似文献   

5.
To determine whether platelet adhesion to surfaces coated with the matrix protein osteopontin requires an agonist-induced increase in the affinity of the integrin alpha v beta 3 for this ligand, we used laser tweezers to measure the rupture force between single alpha v beta 3 molecules on the platelet surface and osteopontin-coated beads. Virtually all platelets stimulated with 10 microM ADP bound strongly to osteopontin, producing rupture forces as great as 100 piconewtons (pN) with a peak at 45-50 pN. By contrast, 90% of unstimulated, resting non-reactive platelets bound weakly to osteopontin, with rupture forces rarely exceeding 30-35 pN. However, approximately 10% of unstimulated platelets, resting reactive platelets, exhibited rupture force distributions similar to stimulated platelets. Moreover, ADP stimulation resulted in a 12-fold increase in the probability of detecting rupture forces >30 pN compared with resting non-reactive platelets. Pre-incubating stimulated platelets with the inhibitory prostaglandin E1, a cyclic RGD peptide, the monoclonal antibody abciximab, or the alpha v beta 3-specific cyclic peptide XJ735 returned force histograms to those of non-reactive platelets. These experiments demonstrate that ADP stimulation increases the strength of the interaction between platelet alpha v beta 3 and osteopontin. Furthermore, they indicate that platelet adhesion to osteopontin-coated surfaces requires an agonist-induced exposure of alpha v beta 3-binding sites for this ligand.  相似文献   

6.
Complexes of actinomycin D (AMD) and 7-amino-actinomycin D (7AAMD) with model hairpin oligonucleotide HP1 and various types of DNA in aqueous solutions were investigated by steady-state, polarized, time-resolved and stopped-flow fluorimetry, and photometry. Prompt non-stacking binding of the actinomycins inside HP1 was observed. No energy transfer from nucleotides to 7AAMD in the complex was detected, most likely because of the absence of stacking intercalation. Complex formation of AMD or 7AAMD and HP1 was followed by the transition from a random flexible conformation of the hairpin to a more compact rigid structure, and subsequently to hypochromism. Strong competition between AMD and 7AAMD for a cavity in HP1 was observed. The decrease in the 7AAMD emission after addition of DNA to the 7AAMD/HP1 complex indicates that actinomycins can be redistributed from HP1 to DNA, i.e. hairpin oligonucleotides can serve as molecular carriers of actinomycins.  相似文献   

7.
Among chromatin remodeling factors, the ISWI family displays a nucleosome-enhanced ATPase activity coupled to DNA translocation. While these enzymes are known to bind to DNA, their activity has not been fully characterized. Here we use TEM imaging and single molecule manipulation to investigate the interaction between DNA and yeast Isw1a. We show that Isw1a displays a highly cooperative ATP-independent binding to and bridging between DNA segments. Under appropriate tension, rare single nucleation events can sometimes be observed and loop DNA with a regular step. These nucleation events are often followed by binding of successive complexes bridging between nearby DNA segments in a zipper-like fashion, as confirmed by TEM observations. On nucleosomal substrates, we show that the specific ATP-dependent remodeling activity occurs in the context of cooperative Isw1a complexes bridging extranucleosomal DNA. Our results are interpreted in the context of the recently published partial structure of Isw1a and support its acting as a "protein ruler" (with possibly more than one tick).  相似文献   

8.
The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection.  相似文献   

9.
Heterochromatin protein-1 (HP1) plays an essential role in both the assembly of higher-order chromatin structure and epigenetic inheritance. The C-terminal chromo shadow domain (CSD) of HP1 is responsible for homodimerization and interaction with a number of chromatin-associated nonhistone proteins, including EMSY, which is a BRCA2-interacting protein that has been implicated in the development of breast and ovarian cancer. We have determined the crystal structure of the HP1beta CSD in complex with the N-terminal domain of EMSY at 1.8 A resolution. Surprisingly, the structure reveals that EMSY is bound by two HP1 CSD homodimers, and the binding sequences differ from the consensus HP1 binding motif PXVXL. This structural information expands our understanding of HP1 binding specificity and provides insights into interactions between HP1 homodimers that are likely to be important for heterochromatin formation.  相似文献   

10.
11.
12.
13.
14.
Heterochromatin protein 1 (HP1), a major component of constitutive heterochromatin, is recruited to DNA damage sites. However, the mechanism involved in this recruitment and its functional importance during DNA repair remain major unresolved issues. Here, by characterizing HP1α dynamics at laser-induced damage sites in mammalian cells, we show that the de novo accumulation of HP1α occurs within both euchromatin and heterochromatin as a rapid and transient event after DNA damage. This recruitment is strictly dependent on p150CAF-1, the largest subunit of chromatin assembly factor 1 (CAF-1), and its ability to interact with HP1α. We find that HP1α depletion severely compromises the recruitment of the DNA damage response (DDR) proteins 53BP1 and RAD51. Moreover, HP1α depletion leads to defects in homologous recombination-mediated repair and reduces cell survival after DNA damage. Collectively, our data reveal that HP1α recruitment at early stages of the DDR involves p150CAF-1 and is critical for proper DNA damage signaling and repair.  相似文献   

15.
16.
17.
18.
Chromatin structure is greatly influenced by histone tail post-translational modifications (PTM), which also play a central role in epigenetic processes. Antibodies against modified histone tails are central research reagents in chromatin biology and molecular epigenetics. We applied Celluspots peptide arrays for the specificity analysis of 36 commercial antibodies from different suppliers, which are directed towards modified histone tails. The arrays contained 384 peptides from eight different regions of the N-terminal tails of histones, viz. H3 1–19, 7–26, 16–35 and 26–45, H4 1–19 and 11–30, H2A 1–19 and H2B 1–19, featuring 59 post-translational modifications in many different combinations. Using various controls we document the reliability of the method. Our analysis revealed previously undocumented details in the specificity profiles of the tested antibodies. Most of the antibodies bound well to the PTM they have been raised for, but some failed. In addition, some antibodies showed high cross-reactivity and most antibodies were inhibited by specific additional PTMs close to the primary one. Furthermore, specificity profiles for antibodies directed toward the same modification sometimes were very different. The specificity of antibodies used in epigenetic research is an important issue. We provide a catalog of antibody specificity profiles for 36 widely used commercial histone tail PTM antibodies. Better knowledge about the specificity profiles of antibodies will enable researchers to implement necessary control experiments in biological studies and allow more reliable interpretation of biological experiments using these antibodies.Key words: histone modification, histone methylation, histone acetylation, histone phosphorylation, chromatin, antibody, specificity, ChIP  相似文献   

19.
Fanti L  Berloco M  Piacentini L  Pimpinelli S 《Genetica》2003,117(2-3):135-147
The Heterochromatin Protein 1 (HP1) is a conserved protein which is best known for its strong association with the heterochromatin of Drosophila melanogaster. We previously demonstrated that another important property of HP1 is its localization to the telomeres of Drosophila, a feature that reflects its critical function as a telomere capping protein. Here we report our analysis of the euchromatic sites to which HP1 localizes. Using an anti-HP1 antibody, we compared immunostaining patterns on polytene chromosomes of the Ore-R wild type laboratory strain and four different natural populations. HP1 was found to accumulate at specific euchromatic sites, with a subset of the sites conserved among strains. These sites do not appear to be defined by an enrichment of known repetitive DNAs. Comparisons of HP1 patterns among several Drosophila species revealed that association with specific euchromatic regions, heterochromatin and telomeres is a conserved characteristic of HP1. Based on these results, we argue that HP1 serves a broader function than typically postulated. In addition to its role in heterochromatin assembly and telomere stability, we propose that HP1 plays an important role in regulating the expression of many different euchromatic regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号