首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The control of intracellular membrane trafficking by Rho GTPases is central to cellular homeostasis. How specific guanine nucleotide exchange factors and GTPase-activating proteins locally balance GTPase activation in this process is nevertheless largely unclear. By performing a microscopy-based RNAi screen, we here identify the RhoGEF protein Solo as a functional counterplayer of DLC3, a RhoGAP protein with established roles in membrane trafficking. Biochemical, imaging and optogenetics assays further uncover Solo as a novel regulator of endosomal RhoB. Remarkably, we find that Solo and DLC3 control not only the activity, but also total protein levels of RhoB in an antagonistic manner. Together, the results of our study uncover the first functionally connected RhoGAP-RhoGEF pair at endomembranes, placing Solo and DLC3 at the core of endocytic trafficking.  相似文献   

3.
Fc receptors on the luminal membranes of intestinal epithelial cells in the neonatal rat mediate the vesicular transfer of functionally intact IgG from the intestinal lumen to the circulation. In addition, there is a low level of nonselective protein uptake, but in this case transfer does not occur. To determine whether a specialized class of endocytic vesicles could account for the selective transfer of IgG, mixtures of IgG conjugated to ferritin (IgG-Ft) and unconjugated horseradish peroxidase (HRP) were injected together into the proximal intestine of 10-d-old rats, and the cellular distribution of these two different tracers was determined by electron microscopy. Virtually all apical endocytic vesicles contained both tracers, indicating simultaneous uptake of both proteins within the same vesicle. However, only IgG-Ft bound to the apical plasma membrane, appeared within coated vesicles at the lateral cell surface, and was released from cells. HRP did not bind to the luminal membrane and was not transferred across cells but was confined to apical lysosomes as identified by acid phosphatase and aryl sulfatase activities. To test the possibility that the binding of IgG to its receptor stimulated endocytosis, HRP was used as a fluid volume tracer, and the amount of HRP taken up by cells in the presence and absence of IgG was measured morphologically and biochemically. The results demonstrate that endocytosis in these cells is constitutive and occurs at the same level in the absence of IgG. The evidence presented indicates that the principal selective mechanism for IgG transfer is the binding of IgG to its receptor during endocytosis. Continued binding to vesicle membranes appears to be required for successful transfer because unbound proteins are removed from the transport pathway before exocytosis. These results favor the proposal that IgG is transferred across cells as an IgG-receptor complex.  相似文献   

4.
5.
In Saccharomyces cerevisiae the uptake of cytosine, uracil and uridine is mediated by three permeases. Using mutants blocked in the metabolic utilization of these three compounds we were able to study their specific uptake. Cytosine and uridine show simple saturation kinetics, whereas uracil uptake is a biphasic process. A comparison of the effects of several inhibitors of energy metabolism on these uptake systems was made. Striking differences were found. 2,4-Dinitrophenol (10?3 M) and NaN3 (10?2 M) inhibit the entry of the three compounds to similar extent, but chlorhexidine (10?5 M) and Dio 9 (50 μg/ml) which are ATPase inhibitors in vitro strongly impaired cytosine and uridine entry and remained without effect on uracil uptake.We provisionally conclude that these systems may be energized by different mechanisms. In the case of cytosine and uridine permease, a membrane ATPase is possibly involved in the process of energetic coupling whereas this does not seem to be so for uracil.  相似文献   

6.
Oxidative stress is involved in epidermal cell pathology. One potential mechanism for this toxicity that has previously not been explored in epidermal cells involves modulation of endocytic trafficking and the implications that such modulation can have for altered cell function. The effects of oxidative stress on endocytic trafficking are not well understood, particularly relating to how general or cell-type specific such effects may be. With induction of oxidative stress by hydrogen peroxide, for example, both impaired and enhanced cell-surface binding and endocytic trafficking have been reported for transferrin (Tf), a circulatory iron-carrier protein. The objective of the current study was to characterize the effect of oxidative stress on internalization and endocytic trafficking of Tf in an epidermoid cell line (A431). Evidence is presented for a significant dose-dependent impairment of cellular Tf internalization after treatment with hydrogen peroxide over a wide range of concentrations from 0.06 to 5.8 mM. Scatchard analysis of binding revealed that peroxide treatments resulted in a large decrease, more than fourfold, in the number of cell-surace Tf-binding sites (Bmax) but little change in the dissociation constant (Kd). With respect to endocytic trafficking of Tf, evidence is presented that transport of internalized transferrin back out of the cell (i.e., Tf recycling) is significantly impaired as a result of oxidative stress at all the peroxide concentrations tested. The oxidative stress-dependent changes in endocytic trafficking in these malignant human keratinocytes are compared with those reported for other cell types.  相似文献   

7.
In Saccharomyces cerevisiae the uptake of cytosine, uracil and uridine is mediated by three permeases. Using mutants blocked in the metabolic utilization of these three compounds we were able to study their specific uptake. Cytosine and uridine show simple saturation kinetics, whereas uracil uptake is a biphasic process. A comparison of the effects of several inhibitors of energy metabolism on these uptake systems was made. Striking differences were found. 2,4-Dinitrophenol (10(-3) M) and NaN3 (10(-2) M) inhibit the entry of the three compounds to similar extent, but chlorhexidine (10(-5) M) and Dio 9 (50 microgram/ml) which are ATPase inhibitors in vitro strongly impaired cytosine and uridine entry and remained without effect on uracil uptake. We provisionally conclude that these systems may be energized by different mechanisms. In the case of cytosine and uridine permease, a membrane ATPase is possibly involved in the process of energetic coupling whereas this does not seem to be so for uracil.  相似文献   

8.
9.

Background  

Optineurin is a multifunctional protein involved in several functions such as vesicular trafficking from the Golgi to the plasma membrane, NF-κB regulation, signal transduction and gene expression. Mutations in optineurin are associated with glaucoma, a neurodegenerative eye disease that causes blindness. Genetic evidence suggests that the E50K (Glu50Lys) is a dominant disease-causing mutation of optineurin. However, functional alterations caused by mutations in optineurin are not known. Here, we have analyzed the role of optineurin in endocytic recycling and the effect of E50K mutant on this process.  相似文献   

10.
His349 in human transferrin (hTF) is a residue critical to transferrin receptor (TFR)-stimulated iron release from the C-lobe. To evaluate the importance of His349 on the TFR interaction, it was replaced by alanine, aspartate, lysine, leucine, tryptophan, and tyrosine in a monoferric C-lobe hTF construct (FeChTF). Using a stopped-flow spectrofluorimeter, we determined rate processes assigned to iron release and conformational events (in the presence and in the absence of the TFR). Significantly, all mutant/TFR complexes feature dampened iron release rates. The critical contribution of His349 is most convincingly revealed by analysis of the kinetics as a function of pH (5.6–6.2). The FeChTF/TFR complex titrates with a pK a of approximately 5.9. By contrast, the H349A mutant/TFR complex releases iron at higher pH with a profile that is almost the inverse of that of the control complex. At the putative endosomal pH of 5.6 (in the presence of salt and chelator), iron is released from the H349W mutant/TFR and H349Y mutant/TFR complexes with a single rate constant similar to the iron release rate constant for the control; this suggests that these substitutions bypass the required pH-induced conformational change allowing the C-lobe to directly interact with the TFR to release iron. The H349K mutant proves that although the positive charge is crucial to complete iron release, the geometry at this position is also critical. The H349D mutant shows that a negative charge precludes complete iron release at pH 5.6 both in the presence and in the absence of the TFR. Thus, histidine uniquely drives the pH-induced conformational change in the C-lobe required for TFR interaction, which in turn promotes iron release.  相似文献   

11.
T C Taylor  R A Kahn  P Melan?on 《Cell》1992,70(1):69-79
We have used an intra-Golgi transport assay to identify GTP-binding proteins involved in regulation of protein traffic. Two soluble proteins of 20 kd were purified by their ability to mediate GTP gamma S-dependent inhibition of transport. These GTP-dependent Golgi binding factors, or GGBFs, exhibit a 3-fold difference in activity and are differentiated by their hydrophobicity, isoelectric points, and apparent size. Removal of 80% of GGBFs from cytosol abolishes GTP gamma S sensitivity but does not affect inhibition by aluminum fluoride. We demonstrate that GGBFs are members of the ADP-ribosylation factor (ARF) family. Recombinant ARF1 exhibits GGBF activity and myristoylation is required. The distinct biochemical properties of GGBFs indicate that members of the ARF family may have related but distinct functions in intracellular transport.  相似文献   

12.
Earlier studies have shown that transferrin binds to specific receptors on the reticulocyte surface, clusters in coated pits and is then internalized via endocytic vesicles. Guinea-pig reticulocytes also have specific receptors for ferritin. In this paper ferritin and transferrin endocytosis by guinea-pig reticulocytes was studied by electron microscopy using the natural electron density of ferritin and colloidal gold-transferrin (AuTf). At 4 degrees C both ligands bound to the cell surface. At 37 degrees C progressive uptake occurred by endocytosis. AuTf and ferritin clustered in the same coated pits and small intracellular vesicles. After 60 min incubations the ligands colocalized to large multivesicular endosomes (MVE), still membrane-bound. MVE subsequently fused with the plasma membrane and released AuTf, ferritin and inclusions by exocytosis. All endocytic structures labelled with AuTf contained ferritin, but 23 to 35% of ferritin-labelled endocytic structures contained no AuTf. These data suggest that ferritin and transferrin are internalized through the same pathway involving receptors, coated pits and vesicles, but that these proteins are recycled only partly in common.  相似文献   

13.
Budding of transport vesicles from the endoplasmic reticulum in yeast requires the formation, at the budding site, of a coat protein complex (COPII) that consists of two heterodimeric subcomplexes (Sec23p/Sec24p and Sec13p/Sec31p) and the Sar1 GTPase. Sec24p is an essential protein and involved in cargo selection. In addition to Sec24p, the yeast Saccharomyces cerevisiae expresses two non-essential Sec24p-related proteins, termed Sfb2p (product of YNL049c) and Sfb3p/Lst1p (product of YHR098c). We here show that Sfb2p and, less efficiently, Sfb3p/Lst1p are able to bind, like Sec24p, the integral membrane cargo protein Sed5p. We also demonstrate that Sfb2p, like Sec24p and Sfb3p/Lst1p, forms a complex with Sec23p in vivo. Whereas the deletion of SFB2 did not affect transport kinetics of various proteins, the maturation of the glycolipid-anchored plasma membrane protein Gas1p was differentially impaired in sfb3 knock-out cells. We generated several conditional-lethal sec24 mutants that, combined with null alleles of SFB2 and SFB3/LST1, led to a complete block of transport between the endoplasmic reticulum and the Golgi (sec24-11/Deltasfb2) or to cell death (sec24-11/Deltasfb3). Of the Sec24p family members, Sfb2p is the least abundant at steady state, but high intracellular concentrations of Sfb2p can rescue sec24 mutants under restrictive conditions. The data presented strongly suggest that the Sec24p-related proteins function as COPII components.  相似文献   

14.
We extracted maximum information for structure-function analysis of the PSE-4 class A beta-lactamase by random replacement mutagenesis of three contiguous codons in the H4 alpha-helix at amino acid positions Ala125, Thr126, Met127, Thr128 and Thr129. These positions were predicted to interact with suicide mechanism-based inhibitors when examining the PSE-4 three-dimensional model. Structure-function studies on positions 125-129 indicated that in PSE-4 these amino acids have a role distinct from those in TEM-1, in tolerating substitutions at Ala125 and being invariant at Met127. The importance of Met127 was suspected to be implicated in a structural role in maintaining the integrity of the H4 alpha-helix structure together, thus maintaining the important Ser130-Asp131-Asn132 motif positioned towards the active site. At the structural level, the H4 region was analyzed using energy minimization of the H4 regions of the PSE-4 YAM mutant and compared with wild-type PSE-4. The Tyr 125 of the mutant YAM formed an edge to face pi-pi interaction with Phe 124 which also interacts with the Trp 210 with the same interactions. Antibiotic susceptibilities showed that amino acid changes in the the H4 alpha-helix region of PSE-4 are particularly sensitive to mechanism based-inhibitors. However, kinetic analysis of PSE-4 showed that the two suicide inhibitors belonging to the penicillanic acid sulfone class, sulbactam and tazobactam, were less affected by changes in the H4 alpha-helix region than clavulanic acid, an inhibitor of the oxypenam class. The analysis of H4 alpha-helix in PSE-4 suggests its importance in interactions with the three clinically useful inhibitors and in general to all class A enzymes.  相似文献   

15.
Stylar riboncleases (RNases) are associated with gametophytic self-incompatibility in two plant families, the Solanaceae and the Rosaceae. The self-incompatibility-associated RNases (S-RNases) of both the Solanaceae and the Rosaceae were recently reported to belong to the T2 RNase gene family, based on the presence of two well-conserved sequence motifs. Here, the cloning and characterization of S-RNase genes from two species of Rosaceae, apple (Malus × domestica) and Japanese pear (Pyrus serotina) is described and these sequences are compared with those of other T2-type RNases. The S-RNases of apple specifically accumulated in styles following maturation of the flower bud. Two cDNA clones for S-RNases from apple, and PCR clones encoding a further two apple S-RNases as well as two Japanese pear S-RNases were isolated and sequenced. The deduced amino acid sequences of the rosaceous S-RNases contained two conserved regions characteristic of the T2/S-type RNases. The sequences showed a high degree of diversity, with similarities ranging from 60.4% to 69.2%. Interestingly, some interspecific sequence similarities were higher than those within a species, possibly indicating that diversification of S-RNase alleles predated speciation in the Rosaceae. A phylogenetic tree of members of the T2/S-RNase superfamily in plants was obtained. The rosaceous S-RNases formed a new lineage in the tree that was distinct from those of the solanaceous S-RNases and the S-like RNases. The findings suggested that self-incompatibility mechanisms in Rosaceae and Solanaceae are similar but arose independently in the course of evolution.  相似文献   

16.
17.
The K3 protein of a human tumor-inducing herpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), down-regulates major histocompatibility complex (MHC) class I surface expression by increasing the rate of endocytosis. In this report, we demonstrate that the internalization of MHC class I by the K3 protein is the result of multiple, consecutive trafficking pathways that accelerate the endocytosis of class I molecules, redirect them to the trans-Golgi network (TGN), and target MHC class I to the lysosomal compartment. Remarkably, these actions of K3 are functionally and genetically separable; the N-terminal zinc finger motif and the central sorting motif are involved in triggering internalization of MHC class I molecules and redirecting them to the TGN. Subsequently, the C-terminal diacidic cluster region of K3 is engaged in targeting MHC class I molecules to the lysosomal compartment. These results demonstrate a novel trafficking mechanism of MHC class I molecules induced by KSHV K3, which ensures viral escape from host immune effector recognition.  相似文献   

18.
In Salmonella typhimurium, the corA, mgtA, and mgtB loci are involved in active transport of Mg2+ (S. P. Hmiel, M. D. Snavely, C. G. Miller, and M. E. Maguire, J. Bacteriol. 168:1444-1450, 1988; S. P. Hmiel, M. D. Snavely, J. B. Florer, M. E. Maguire, and C. G. Miller, J. Bacteriol. 171:4742-4751, 1989). In this study, the gene products coded for by the corA, mgtA, and mgtB genes were identified by using plasmid expression in Escherichia coli maxicells. Complementation was assessed by introducing plasmids into a Mg2+-dependent corA mgtA mgtB strain and determining the ability of the plasmid to restore growth on medium without a Mg2+ supplement. Complementing plasmids containing corA expressed a 42-kilodalton (kDa) protein. This protein was not expressed by plasmids containing insertions or deletions that eliminated complementation. A plasmid containing mgtA expressed 37- and 91-kDa gene products. Data obtained with subclones and insertions in this plasmid indicated that plasmids expressing only the 91-kDa polypeptide complemented; plasmids that did not express this protein did not complement regardless of whether they expressed the 37-kDa protein. Plasmids carrying mgtB expressed a single protein of 102 kDa whose presence or absence correlated with the ability of the plasmid to complement the Mg2+-dependent triple mutant. Fractionation of labeled maxicells demonstrated that the 42-kDa corA, the 91-kDa mgtA, and the 102-kDa mgtB gene products are all tightly associated with the membrane, a location consistent with involvement in a transport process. These data provide further support the for existence of three distinct systems for Mg2+ transport in S. typhimurium.  相似文献   

19.
Summary By isoelectric focusing at pH 3.5–9.5, Kühnl and Spielmann (1977) recently demonstrated a new genetically determined serum protein polymorphism designated Hpa because of an apparently specific reaction with antihaptoglobin. In this study the polymorphism was reproduced, but the components were found to focus at pH 5.8, which is different from the pI of haptoglobin, and immunologic relation to haptoglobin could not be comfirmed. Using pure transferrin as a reference, the results of isoelectric focusing, crossed immunoelectrophoresis, and immunofixation indicated that the polymorphic components were identical to transferrin. This polymorphism does not correspond to the already known transferrin polymorphism, as the two usual genes, tentatively designated Tf1 and Tf2, in my population sample (n=132) were 0.19 and 0.81, and, further, all individuals except three in the sample belong to type Tf-C.  相似文献   

20.
Class specificity of transferrin as a muscle trophic factor   总被引:2,自引:0,他引:2  
The specificity of transferrin (Tf) in its exertion of a growth-promoting effect on myogenic cells was examined using serum Tfs from chick, dove, goose, turkey, bovine, horse, rabbit, rat, and swine and primary myogenic cells from chick, duck, quail, rabbit, and rat, and rat L6 cells. Avian Tfs were effective on avian cells but not on mammalian cells, while mammalian Tfs were effective on mammalian cells but not on avian cells. Dove and bovine Tfs were exceptional in that they were effective on some class-heterologous cells at higher concentrations and less so or completely ineffective on some class-homologous cells. Despite these exceptions, however, the relationship between Tfs and cells can be summarized as a class specificity. To exert the growth-promoting effect, it is prerequisite for Tf to bind its specific receptor on the cell surface. Using quail and L6 cells, we found that the binding of 125I-labeled chick and rat Tfs to the respective receptors of quail and L6 myoblasts was competitively inhibited by other kinds of effective Tfs, but not by ineffective ones. We conclude that the class specificity in myotrophic activity of Tf is due to the affinity between Tf and Tf receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号