首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li A  Tian X  Sung SW  Somlo S 《Genomics》2003,81(6):596-608
Mutations to the prototypical members of the two general classes of polycystins, polycystin-1 encoded by PKD1 and polycystin-2 encoded by PKD2, underlie autosomal-dominant polycystic kidney disease. Here we report the identification of a pair of genes homologous to PKD1 from both the human and mouse genomes. PKD1L2 and PKD1L3 are located on human chromosome 16q22-q23 and mouse chromosome 8 and are alternatively spliced. The human and mouse forms of PKD1L2 are highly conserved, with each one consisting of 43 exons and approximately 2,460 codons. PKD1L3 shows regional sequence divergence, with the mouse form having two additional exons and a much larger exon 5. The predicted protein products of PKD1L2 and PKD1L3 contain the combination of GPS and PLAT/LH2 domains that uniquely define them as polycystin-1 family members. They are predicted to have 11 membrane-spanning regions with a large extracellular domain consistent with the proposed receptor function of this protein family. PKD1L2 and PKD1L3 contain strong ion channel signature motifs that suggest their possible function as components of cation channel pores. Polycystin-1-related proteins may not only regulate channels, but may actually be part of the pore-forming unit.  相似文献   

2.
Peroxisome proliferator activated-receptor (PPAR) isoforms, alpha and gamma, function as important coregulators of energy (lipid) homeostasis. PPARalpha regulates fatty acid oxidation primarily in liver and to a lesser extent in adipose tissue, whereas PPARgamma serves as a key regulator of adipocyte differentiation and lipid storage. Of the two PPARgamma isoforms, PPARgamma1 and PPARgamma2 generated by alternative splicing, PPARgamma1 isoform is expressed in liver and other tissues, whereas PPARgamma2 isoform is expressed exclusively in adipose tissue where it regulates adipogenesis and lipogenesis. Since the function of PPARgamma1 in liver is not clear, we have, in this study, investigated the biological impact of overexpression of PPARgamma1 in mouse liver. Adenovirus-PPARgamma1 injected into the tail vein induced hepatic steatosis in PPARalpha(-/-) mice. Northern blotting and gene expression profiling results showed that adipocyte-specific genes and lipogenesis-related genes are highly induced in PPARalpha(-/-) livers with PPARgamma1 overexpression. These include adipsin, adiponectin, aP2, caveolin-1, fasting-induced adipose factor, fat-specific gene 27 (FSP27), CD36, Delta(9) desaturase, and malic enzyme among others, implying adipogenic transformation of hepatocytes. Of interest is that hepatic steatosis per se, induced either by feeding a diet deficient in choline or developing in fasted PPARalpha(-/-) mice, failed to induce the expression of these PPARgamma-regulated adipogenesis-related genes in steatotic liver. These results suggest that a high level of PPARgamma in mouse liver is sufficient for the induction of adipogenic transformation of hepatocytes with adipose tissue-specific gene expression and lipid accumulation. We conclude that excess PPARgamma activity can lead to the development of a novel type of adipogenic hepatic steatosis.  相似文献   

3.
4.
Identification of endothelial genes up-regulated in vivo   总被引:1,自引:0,他引:1  
Pai JT  Ruoslahti E 《Gene》2005,347(1):21-33
We have used microarrays to identify genes that are selectively expressed in endothelial cells in vivo. Analysis of freshly isolated endothelial cells from the lungs and kidneys reveals that 350 out of the 10,000 genes represented on the microarrays were expressed at higher levels than by the corresponding parenchymal cells. Thirteen of these genes were identified both in the lung and kidney screens from a subset of about 5000 genes. Many of these genes are known to be specifically expressed in endothelial cells, but about 200 genes were potentially novel endothelial genes. The preferential endothelial expression of a selected group of these genes was confirmed by quantitative polymerase chain reaction or in situ mRNA hybridization. Comparison of the genes expressed in lung and kidney endothelia revealed numerous differences. Notably, genes encoding components of an ephrin signaling pathway were highly expressed in lung endothelial cells. In summary, the genes we have identified represent potentially new pan-endothelial and tissue-specific endothelial markers.  相似文献   

5.
6.
Although central to the susceptibility of adult diseases characterized by abnormal rhythmogenesis, characterizing the genes involved is a challenge. We took advantage of the C57BL/6J (B6) trait of hypoxia-induced periodic breathing and its absence in the C57BL/6J-Chr 1(A/J)/NaJ chromosome substitution strain to test the feasibility of gene discovery for this abnormality. Beginning with a genetic and phenotypic analysis of an intercross study between these strains, we discovered three quantitative trait loci (QTLs) on mouse chromosome 1, with phenotypic effects. Fine-mapping reduced the genomic intervals and gene content, and the introgression of one QTL region back onto the C57BL/6J-Chr 1(A/J)/NaJ restored the trait. mRNA expression of non-synonymous genes in the introgressed region in the medulla and pons found evidence for differential expression of three genes, the highest of which was apolipoprotein A2, a lipase regulator; the apo a2 peptide fragment (THEQLTPLVR), highly expressed in the liver, was expressed in low amounts in the medulla but did not correlate with trait expression. This work directly demonstrates the impact of elements on mouse chromosome 1 in respiratory rhythmogenesis.  相似文献   

7.
Phosphomannomutases catalyze the reversible conversion of mannose 6-phosphate to mannose 1-phosphate. In humans, two different isozymes have recently been identified, PMM1 and PMM2. We have previously shown that mutations in the PMM2 gene cause the most frequent type of the congenital disorders of glycosylation, CDG-Ia. Here, we present data on the two mouse orthologous genes, Pmm1 and Pmm2. The chromosomal localization of the two mouse genes has been determined. We also present the gene structure and the exon-intron organization of Pmm1 and Pmm2. Pmm1 maps to mouse chromosome 15, Pmm2 to chromosome 16. These chromosomal regions are syntenic with regions on human chromosomes 22 and 16, respectively. The Pmm1 gene is composed of eight exons and spans approximately 9.5 kb. The genomic structure is extremely well conserved between the human and mouse gene. The Pmm2 gene consists of eight exons and spans a larger genomic region (≈20 kb). An alignment of the human and mouse protein sequences confirms the conservation among this family of phosphomannomutases. The two mouse genes are expressed in many tissues, but the expression pattern is slightly different between Pmm1 and Pmm2. The most striking difference is the high expression of Pmm1 in brain tissue, whereas Pmm2 is only weakly expressed in this tissue.  相似文献   

8.
We recently helped to complete the sequence of human chromosome 21 at a very high level of accuracy. Using this sequence we identified two novel genes, designated DSCR9 and DSCR10, in the so-called Down Syndrome Critical Region (DSCR) by computational gene prediction and subsequent cDNA cloning. Both DSCR9 and DSCR10 are expressed preferentially in testis and encode functionally unknown proteins with 149 and 87 amino acid residues, respectively. Zoo blot analysis suggested that both genes are exclusive to primate genomes such as chimpanzee, gorilla, orangutan, crab-eating monkey and African green monkey but are not present in other non-primate mammals including mouse, dog, cat, and chicken. Comparative genomic sequence analysis of DSCR9 and DSCR10 with the corresponding mouse syntenic region confirmed the lack of these genes in the mouse. These results strongly suggest that DSCR9 and DSCR10 have emerged as a new class of gene in the primate lineage during evolution.  相似文献   

9.
10.
Yan J  Ying H  Gu F  He J  Li YL  Liu HM  Xu YH 《Cell research》2002,12(5-6):353-361
Human fibrinogen-related protein-1/liver fibrinogen-related protein-1 (HFREP-1/LFIRE-1), a liver-specific protein, is a member of fibrinogen superfamily that exerts various biological activities. However, the function of HFREP-1/LFIRE-1 in liver remains unknown. Here we isolated its mouse ortholog gene-mouse fibrinogen-related protein-1 (mfrep-1), which encoded 314 amino acids, exhibiting 80.4% similarity to HFREP-1/LFIRE-1. Northern blot analysis revealed that 1.2-kb mfrep-1 mRNA was detected selectively in mouse liver. To explore the function of MFREP-1, we examined the levels of mfrep-1 mRNA during regeneration after 70% partial hepatectomy (PHx) in mice. mfrep-1 mRNA increased in the regenerating liver and reached the first shoulder peak at 2-4 h after PHx. Cycloheximide pretreatment could suppress the induction of mfrep-1, indicating the up-regulation of this gene need de novo protein synthesis. Its mRNA continued to elevate at 6 h thereafter and reached the second peak at 24 h. The enhanced expression of mfrep-1 maintained high until 72 h and then declined slowly to the basal level. Immunohistochemistry assessment confirmed the up-regulated expression of MFREP-1 protein in parenchymal cells during liver regeneration. These data suggested that MFREP-1 might play an important role in liver regeneration and be involved in the regulation of cell growth.  相似文献   

11.
Human fibrinogen-related protein-1/liver fibrinogen-related protein-1 (HFREP-l/LFIRE-1), a liver-specific protein, is a member of fibrinogen superfamily that exerts various biological activities. However, the function of HFREP-l/LFIRE-1 in liver remains unknown. Here we isolated its mouse ortholog gene-mouse fibrinogen-related protein-1 (mfrep-1), which encoded 314 amino acids, exhibiting 80.4% similarity to HFREP-l/LFIRE-1. Northern blot analysis revealed that 1.2-kb mfrep-1 mRNA was detected selectively in mouse liver. To explore the function of MFREP-1, we examined the levels of mfrep-1 mRNA during regeneration after 70% partial hepatectomy (PHx) in mice, mfrep-1 mRNA increased in the regenerating liver and reached the first shoulder peak at 2-4 h after PHx. Cycloheximide pretreatment could suppress the induction of mfrep-1, indicating the up-regulation of this gene need de novo protein synthesis. Its mRNA continued to elevate at 6 h thereafter and reached the second peak at 24 h. The enhanced express  相似文献   

12.
Schwarte S  Bauwe H 《Plant physiology》2007,144(3):1580-1586
The chloroplastidal enzyme 2-phosphoglycolate phosphatase (PGLP), PGLP1, catalyzes the first reaction of the photorespiratory C(2) cycle, a major pathway of plant primary metabolism. Thirteen potential PGLP genes are annotated in the Arabidopsis (Arabidopsis thaliana) genome; however, none of these genes has been functionally characterized, and the gene encoding the photorespiratory PGLP is not known. Here, we report on the identification of the PGLP1 gene in a higher plant and provide functional evidence for a second, nonphotorespiratory PGLP, PGLP2. Two candidate genes, At5g36700 (AtPGLP1) and At5g47760 (AtPGLP2), were selected by sequence similarity to known PGLPs from microorganisms. The two encoded proteins were overexpressed in Escherichia coli and both show PGLP activity. T-DNA knockout of one of these genes, At5g36700, results in very low leaf PGLP activity. The mutant is unviable in normal air but grows well in air enriched with 0.9% CO(2). In contrast, deletion of At5g47760 does not result in a visible phenotype, and leaf PGLP activity is unaltered. Sequencing of genomic DNA from another PGLP-deficient mutant revealed a combined missense and missplicing point mutation in At5g36700. These combined data establish At5g36700 as the gene encoding the photorespiratory PGLP, PGLP1.  相似文献   

13.
14.
Members of the Drosophila Iroquois homeobox gene family are implicated in the development of peripheral nervous system and the regionalization of wing and eye imaginal discs. Recent studies suggest that Xenopus Iroquois homeobox (Irx) genes are also involved in neurogenesis. Three mouse Irx genes, Irx1, Irx2 and Irx3, have been previously identified and are expressed with distinct spatio-temporal patterns during neurogenesis. We report here the cloning and expression analysis of two novel mouse Irx genes, Irx5 and Irx6. Although Irx5 and Irx6 proteins are structurally more related to one another, we find that Irx5 displays a developmental expression pattern strikingly similar to that of Irx3, whereas Irx6 expression resembles that of Irx1. Consistent with the notion that Mash1 is a putative target gene of the Irx proteins, all four Irx genes display an overlapping expression pattern with Mash1 in the developing CNS. In contrast, the Irx genes and Mash1 are expressed in complementary domains in the developing eye and olfactory epithelium.  相似文献   

15.
Amphioxus is a good model organism for understanding the origin and developmental mechanism of vertebrates owing to its important evolutionary position. During the developmental process of amphioxus embryo, the neurula is a crucial stage because of neural tube and notochord formation as well as somite emergence at this stage. In order to isolate genes up-regulated at the neurula stage, we constructed an 11-hour neurula subtracted cDNA library of amphioxus Branchiostoma belcheri and sequenced 204 ESTs representing 82 contigs. Comparative analysis revealed that 55% of those contigs were homologous to various known genes while 45% of them had no significant similarity to any known genes. Those observations imply that the un-identified ESTs might contain some new genes which are involved in the development of amphioxus neurula. Real-time quantitative PCR (RTqPCR) indicated that the expression levels of 14 genes are up-regulated after gastrulation among 20 assayed genes. Of those up-regulated genes, we further cloned and sequenced the full-length of fatty acid binding protein gene (AmphiFABP). The deduced protein sequence was similar to that of vertebrate brain FABP and heart FABP, and in situ hybridization displayed that AmphiFABP, similar to their vertebrate cognates, was expressed not only in nervous system but also in embryonic somite and gut, hinting a multifunctional property of AmphiFABP in amphioxus.  相似文献   

16.
Identification of two novel genes for blackleg resistance in Brassica napus   总被引:1,自引:0,他引:1  
Blackleg, caused by Leptosphaeria maculans, is a major disease of Brassica napus. Two populations of B. napus DH lines, DHP95 and DHP96, with resistance introgressed from B. rapa subsp. sylvestris, were genetically mapped for resistance to blackleg disease with restriction fragment length polymorphism markers. Examination of the DHP95 population indicated that a locus on linkage group N2, named LepR1, was associated with blackleg resistance. In the DHP96 population, a second locus on linkage group N10, designated LepR2, was associated with resistance. We developed BC1 and F2 populations, to study the inheritance of resistance controlled by the genes. Genetic analysis indicated that LepR1 was a dominant nuclear allele, while LepR2 was an incompletely dominant nuclear resistance allele. LepR1 and LepR2 cotyledon resistance was further evaluated by testing 30 isolates from Canada, Australia, Europe, and Mexico. The isolates were from B. napus, B. juncea, and B. oleracea and represented different pathogenicity groups of L. maculans. Results indicated that LepR1 generally conferred a higher level of cotyledon resistance than LepR2. Both genes exhibited race-specific interactions with pathogen isolates; virulence on LepR1 was observed with one isolate, pl87-41, and two isolates, Lifolle 5, and Lifolle 6, were virulent on LepR2. LepR1 prevented hyphal penetration, while LepR2 reduced hyphal growth and inhibited sporulation. Callose deposition was associated with resistance for both loci.  相似文献   

17.
Wang XF  Gao GD  Yang YB  Zhou J  Wang YW  Su XL  Wang Y  Han FC  Bai YJ 《生理学报》2005,57(5):643-647
为了对成年大鼠心肌成纤维细胞(cardiac fibroblasts,CF)受血管紧张素Ⅱ(angiotensin Ⅱ,AngⅡ)刺激后上调基因表达谱进行筛选及分析,以受AngⅡ刺激CF为实验方,未刺激CF为驱动方,进行抑制消减杂交(suppression subtractive hybridization,SSH),建立消减cDNA文库。经斑点杂交筛选文库后将表达变化显著的部分阳性克隆测序及同源性分析,共获得19个上调表达的基因,分别与细胞外基质、细胞周期、胞内信号转导、细胞骨架及细胞代谢等功能相关,并克隆到7个新的基因表达序列标签(expressed sequence tags,EST)。我们的数据证实了SSH可以有效地克隆成年大鼠CF受AngⅡ刺激后上调表达基因,对这些基因的研究将有助于阐明心肌重塑的分子机制。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号