首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The localisation of maize (Zea mays L.) auxin-binding protein (ABP1) has been studied using a variety of techniques. At the whole-tissue level, tissue printing indicated that ABP1 is expressed to similar levels in all cells of the maize coleoptile and in the enclosed leaf roll. Within cells, the signals from immunofluorescence and immunogold labelling of ultrathin sections both indicated that ABP1 is confined to the endoplasmic reticulum (ER), none being detected in either Golgi apparatus or cell wall. This distribution is consistent with targeting motifs in its sequence. These observations are discussed with reference to the various reports which place a population of ABP1 on the outer face of the plasma membrane, including those suggesting that it is necessary on the cell surface for rapid, auxin-mediated protoplast hyperpolarisation. We have tested one proposed model to account for release of ABP1 from the ER, namely that auxin binding induces a conformational change in ABP1 leading to concealment of the KDEL retention motif. Using double-label immunofluorescence the characteristic auxin-induced rise in Golgi-apparatus signal was found, yet no change in the distribution of the ABP1 signal was detected. Maize suspension cultures were used to assay for auxin-promoted secretion of ABP1 into the medium, but secretion was below the limit of detection. This can be ascribed at least partly to the very active acidification of the medium by these cells and the instability of ABP1 in solution below pH 5.0. In the insect-baculovirus expression system, in which cell cultures maintain pH 6.2, a small amount of ABP1 secretion, less than 1% of the total, was detected under all conditions. Insect cells were shown to take up auxin and no inactivation of added auxin was detected, but auxin did not affect the level of ABP1 in the medium. Consequently, no evidence was found to support the model for auxin promotion of ABP1 secretion. Finally, quantitative glycan analysis was used to determine what proportion of ABP1 might reach the plasma membrane in maize coleoptile tissue. The results suggest that less than 15% of ABP1 ever escapes from the ER as far as the cis-Golgi and less than 2% passes further through the secretory pathway. Such leakage rates probably do not require a specialised mechanism allowing ABP1 past the KDEL retrieval pathway, but we are not able to rule out the possibility that some ABP1 is carried through associated with other proteins. The data are consistent with the presence of ABP1 both on the plasma membrane and in the ER. The relative sizes of the two pools explain the results obtained with immunofluorescence and immunogold labelling and illustrate the high efficiency of ER retention in plants. Received: 31 October 1996 / Accepted: 16 December 1996  相似文献   

2.
There is evidence that auxin-binding protein 1 (ABP1) is an auxin receptor on the plasma membrane. Maize (Zea mays L.) possesses a high level of auxin-binding activity due to ABP1, but no other plant source has been shown to possess such an activity. We have analyzed the ABP1 content of tobacco (Nicotiana tabacum L.) to examine whether or not the ABP1 content of maize is exceptionally high among plants. The ABP1 content of tobacco leaves was shown by quantitative immunoblot analysis to be between 0.7 and 1.2 μg ABP1 per gram of fresh leaf. This value is comparable to the reported value in maize shoots, indicating that ABP1 is present at a similar level in both monocot and dicot plants. The ABP1 content of tobacco leaves was increased up to 20-fold by expression of a recombinant ABP1 gene, and decreased to half of the original value by expression of the antisense gene. Although ABP1 was found mainly in the endoplasmic reticulum fraction, a secreted protein showing a molecular size and epitopes similar to intracellular ABP1 was also detected in the culture medium of tobacco leaf disks. The secretion of this protein was dependent on the expression level of the ABP1 gene. Received: 24 February 1999 / Accepted: 25 March 1999  相似文献   

3.
Several properties of a 43-kilodalton (kDa) auxin-binding protein (ABP) having 22-kDa subunits are shared by a class of auxin binding designated Site I. The spatial distribution of the ABP in the maize (Zea mays L.) mesocotyl corresponds with the distribution of growth induced by naphthalene-1-acetic acid and with the distribution of Site I binding as previously shown by J.D. Walton and P.M. Ray (1981, Plant Physiol. 68, 1334–1338). The greatest abundance of both ABP and Site I activity is at the apical region of the mesocotyl. The ABP and Site I activity co-migrate in isopycnic centrifugation with the endoplasmic-reticulum marker, cytochrome-c reductase. Red light, at low and high fluence, far-red and white light were used to alter the elongation rate of apical 1-cm sections of etiolated maize mesocotyls, the amount of auxin binding, and the abundance of the ABP. Relative changes in auxin binding and the ABP were correlated, but the growth rate was not always correlated with the abundance of the ABP.Abbreviations ABP auxin-binding protein - ER endoplasmic reticulum - FR far-red light - kDa kilodalton - NAA naphthalene-1-acetic acid - PM plasma membrane - R red light - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

4.
The monoclonal antibody MAC 256 precipitates specifically the auxin-binding protein (ABP) of maize membranes. Auxin-binding activity was recovered from the immunoprecipitate and MAC 256 can, therefore, bind undenatured, native ABP. A sandwich enzyme-linked immunosorbent assay was used to present native ABP to MAC 256 and under these conditions auxins inhibit antibody binding. Millimolar naphthalene-1-acetic acid completely blocks MAC 256 binding and the characteristics of monoclonal antibody MAC 259 are similar. The ability of a range of auxins and related compounds to displace MAC 256 correlates with the known structure-activity relationships of these compounds in vivo and in binding assays. The results are interpreted in terms of an auxin-induced conformational change in ABP, auxin binding leading to a change in, or concealment of, the epitope of the antibody. The epitope for MAC 256 and 259 lies close to the carboxy terminus of the protein, implying that the part of ABP containing the sequence of amino acids responsible for retention within the endoplasmic reticulum is conformationally active.Abbreviations ABP auxin-binding protein - ELISA enzyme-linked immunosorbent assay - IAA indole-3-acetic acid - Mab monoclonal antibody - NAA naphthalene-1-acetic acid - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - TIBA 2,3,5-triiodobenzoic acid - 2,4,5-T, 2,4,6-T 2,4,5-trichloro- and 2,4,6-trichlorophenoxyacetic acid, respectively We are grateful to Neville Huskisson and Pat Baker of the Microchemical Facility, AFRC IAPGR, Babraham, UK for the aminoacid sequencing and to the staff at the AFRC Monoclonal Antibody Centre, Babraham where the Mabs were produced. This work was partially funded by the Biotechnology Action Programme of the European Economic Community.To whom correspondence should be addressed.  相似文献   

5.
6.
Warwicker J 《Planta》2001,212(3):343-347
Sequence comparison indicates that auxin-binding protein 1 (ABP1) belongs to a family of proteins with the core β-barrel structure of the vicilins. Previous modelling within this family correctly predicted metal-ion binding and oligomeric properties of oxalate oxidase. ABP1 also contains a putative metal-ion-binding cluster of amino acids, adjacent to a tryptophan side chain, leading to a proposed auxin-binding site that incorporates metal-ion interaction with the auxin carboxylate. Modelling implicates W44 (Zea mays ABP1) in auxin binding, rather than W136 or W151. Reduced sequence similarity for the C-terminal region prevents model building. It is proposed that one of these C-terminal tryptophans, along with a neighbouring negatively charged side chain, occupies the binding pocket in the absence of auxin, thereby linking auxin binding to conformational change and C-terminal involvement in signalling. Received: 10 December 1999 / Accepted: 4 August 2000  相似文献   

7.
4-Chlorindole-3-acetic acid (4-CI-IAA), an endogenous auxin in certain plant species of Fabaceae, has a higher efficiency in stimulating cell elongation of grass coleoptiles compared with indole-3-acetic acid (IAA), particularly at low concentrations. However, some investigations reported a 1,000-fold discrepancy between growth stimulation and binding affinity of 4-CI-IAA to auxin-binding protein 1 (ABP1) from maize. Here we report binding data of 4-CI-IAA and three alkylated IAA derivatives using purified ABP1 in equilibrium dialysis. There is a clear correlation between the growth-promoting effects and the binding affinity to ABP1 of the different IAA analogues measured by competition of [3H]naphthalene-1-acetic acid binding. Our data are consistent with the hypothesis that ABP1 mediates auxin-induced cell elongation.Abbreviations ABP1 auxin-binding protein 1 - 4-CI-IAA 4-chloroindole-3-acetic acid - NAA naphthalene-1-acetic acid - ER endoplasmic reticulum - IAA indole-3-acetic acid - 2-Me-IAA 2-methylindole-3-acetic acid - 4-Me-IAA 4-methylindole-3-acetic acid - 4-Et-IAA 4-ethylindole-3-acetic acid - MES 4-morpholineethanesulfonic acid - PAA phenylacetic acid  相似文献   

8.
Kukavica B  Vucinić Z  Vuletić M 《Protoplasma》2005,226(3-4):191-197
Summary. The analysis of plasma membranes from maize roots by native gel electrophoresis revealed the existence of Mn-containing 120 kDa and CuZn-containing 70, 40, and 15 kDa superoxide dismutase (SOD) isoform activities. Isoelectric focusing of the plasma membranes differentiated anionic SOD isoforms with a pI of about 5 and cationic SOD isoforms at pI 8.6. Solubilization of the plasma membrane proteins further separated the cationic SOD into pI 8.6, 8.2, 8.4, and 7.2 isoforms. Double staining for both SOD and peroxidase activities showed an overlap of these activities only in the case of the high-molecular-mass (ca. 120 kDa) isoforms. High-temperature treatments demonstrated that the 120 kDa isoform was active even at 100 °C, indicating that it was a germin-like protein with superoxide-dismutating activity, different from the peroxidase with a similar molecular mass and the lower-molecular-mass CuZn-containing superoxide dismutases. These results are compared to those obtained from whole-tissue extract and apoplastic fluid. Correspondence and reprints: Maize Research Institute, POB 89-Zemun, 11081 Belgrade, Serbia and Montenegro.  相似文献   

9.
Plasma membranes have been purified from roots of maize (Zea mays L.) using a two-phase aqueous polymer system, dextran-polyethylene glycol. The plant material was homogenized in the presence of a mixture of natural protease inhibitors from potato (Solanum tuberosum L.); these inhibitors have been shown to be more effective than phenylmethylsulfonyl fluoride in suppressing the endogenous proteases in maize roots. Inhibition of proteolysis in the homogenization medium markedly increased (about tenfold) the number of lowaffinity binding sites for fusicoccin (FC). In addition, storage of plasma membranes at −20° C decreased both the number of the low-affinity sites and their dissociation constant (KD); this effect was in all probability caused by lipid peroxidation. The presence of EDTA throughout isolation and storage of the plasma membranes stabilized the parameters of FC binding to the membranes. The kinetics of binding of [3H]dihydroFC and the competition between [3H]dihydroFC and FCs A, C, J, and H were determined for the low-affinity sites. It was found that (i) the rate constant of association between FC and the low-affinity binding sites is about two orders of magnitude lower than that for the high-affinity sites; (ii) different FCs can be arranged in the order of decreasing avidity for the low-affinity FCbinding site: FC A>FC C>FC J>FC H. The authors are indebted to Dr. L.M. Krasnopolskaya (Institute of Agricultural Biotechnology, Moscow, Russia) for fusicoccins A, C, J, and H, and to Dr. A.V. Galkin (Institute of Agricultural Biotechnology, Moscow, Russia) for valuable comments and ren dering the paper into English.  相似文献   

10.
Hicks GR  Rice MS  Lomax TL 《Planta》1993,189(1):83-90
We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948–4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or mutimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.Abbreviations HPLC high-pressure liquid chromatography - IAA indole-3-acetic acid - azido-IAA 5-N3-7-3H-IAA - pI isoelectric point - PM plasma membrane - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We thank R. Hopkins and I. Gelford for excellent technical work and our colleagues, especially T. Wolpert and D.L. Rayle, for many helpful discussions. This work was supported by grants to T.L.L. from National Science Foundation (DCB 8904114), National Aeronautics and Space Administration (NAGW 1253) and by a grant to D.L. Rayle and T.L.L. from U.S. Department of Agriculture (90-37261-5779). G.R.H. is supported by a National Aeronautics and Space Administration Predoctoral Fellowship (NGT 50455).  相似文献   

11.
Summary The auxin-binding protein ABP-1 was localised immunocytochemically in coleoptiles and immature embryos ofZea mays. Two primary polyclonal antibodies raised against ABP-1 and secondary antibodies were either labelled with FITC or 10 nm gold particles for light microscopy, and with 10 nm gold particles for transmission electron microscopy. Light microscopy revealed that ABP-1 was localised in the epidermal cells of etiolated maize coleoptiles, in subepidermal parenchymatic mesophyll cells of the coleoptile and in the companion cells of the vascular bundles. Most labelling was found in the cytoplasm, less in nuclei and vacuoles and cell walls appeared negative. The region of the plasma membrane exhibited prominent labelling. Embryos showed low labelling throughout their tissues just after excision, but after culture for 7 days intensive labelling was found in the epidermis of the scutellum. Quantitative electron microscopy confirmed that ABP-1 was present in the cytoplasm of epidermal, mesophyll, and companion cells of coleoptiles. Gold particles were neither found in cell walls nor in the cuticle. Areas with ER and dictyosomes within epidermal and mesophyll cells of coleoptiles had a denser labelling with gold particles than elsewhere. Labelling at the plasma membrane, being the site where the auxin binds to the ABP, was observed at low levels in all cells examined, which is due to the method applied. Epidermal cells of embryos cultured for 5 days exhibited high levels of gold particles in ER and nuclei, and lower levels in the cytoplasm. The distribution is only partly in accordance with the model in which ABP is thought to cycle through the plant cell from the ER via the Golgi system towards the plasma membrane.Abbreviations ABP-1 auxin-binding protein 1 - BSA bovine serum albumin - 2,4-D 2,4-dichlorophenoxyacetic acid - EM electron microscopy - LM light microscopy - LR Write London resin white - PBS phosphate-buffered saline - PEG polyethylene glycol - TEM transmission electron microscopy  相似文献   

12.
Summary.  Superoxide synthase and superoxide dismutase activity have been monitored in isolated maize (Zea mays) root plasma membranes spectrophotometrically by determination of nitro-blue tetrazolium and cytochrome c reduction, respectively. Superoxide production was induced by NADH and NADPH, with similar kinetics and approaching saturation at 0.06 mM in the case of NADPH and 0.1 mM in the case of NADH, with rates of 18.6 ± 5.0 and 21.8 ± 7.2 nmol/min · mg of protein, respectively. These activities exhibited a broad pH optimum between pH 6.5 and 7.5. Diphenylene iodonium inhibited about 25% (10 μM DPI) and 40% (100 μM DPI) of this activity, imidazole inhibited about 20%, while KCN, a peroxidase inhibitor, did not show any significant inhibition. Superoxide-dismutating activity was shown to occur in the same isolates and depended on the quantity of plasma membrane protein present. Growth of plants on salicylic acid prior to membrane isolation induced a rise in the activity of both of the enzymes by 20–35%, suggesting their coordinated action. Received May 15, 2002; accepted September 30, 2002; published online May 21, 2003 RID="*"  相似文献   

13.
The 22 kDa auxin-binding proteins in higher plants have received considerable attention as candidates for an auxin receptor. A cDNA clone Ca-ERabp1 of hot pepper (Capsicum annum) was isolated using the oligonucleotides as PCR primers. The cDNA codes for a polypeptide related to the major 22 kDa auxin-binding protein from maize and Arabidopsis ERabp1. The deduced amino acid sequence contains an endoplasmic reticulum retention signal, the KDEL sequence located at the C-terminal end, and has two possible auxin-binding sites, HRHSCE and YDDWSVPHTA conserved sequences. Northern hybridization analysis revealed that the Ca-ERabp1 gene is differentially expressed in total RNA isolated from different organs of a pepper plant, showing the highest level of expression in fruits but barely detectable in leaves and roots.  相似文献   

14.
Two types of auxin-binding sites (sites I and II) in membranes from maize (Zea mays L.) coleoptiles were characterized. Site I was a protein with a relative molecular mass of 21 000, and the distribution of site I protein on sucrose density gradient fractionation coincided with that of NADH-cytochrome-c reductase (EC 1.6.99.3), a marker enzyme of the endoplasmic reticulum. Immunoprecipitation and immunoblotting studies showed that the content of site I protein in maize coleoptiles was approx. 2 g·(g FW)-1. Site II occurred in higher-density fractions and also differed immunologically from site I. Site I was present at the early developmental stage of the coleoptile and increased only twice during coleoptile growth between day 2 and 4. Site II activity was low at the early stage and increased more substantially between day 3 and 4, a period of rapid growth of the coleoptile. Both sites decreased concurrently after day 4, followed by a reduction in the growth rate of the coleoptile. Coleoptiles with the outer epidermis removed showed a lower site I activity than intact coleoptiles, indicating that site I was concentrated in the outer epidermis. Site II, in contrast, remained constant after removal of the outer epidermis. The results indicate that site I is not a precursor of site II and that the two sites are involved in different cellular functions.Abbreviations FW fresh weight - M r relative molecular mass - 1-NAA 1-naphthaleneacetic acid - 2-NAA 2-naphthaleneacetic acid - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

15.
A novel 67-kDa protein kinase (p67 cdpk ) was identified in the microsomal membrane fraction of apple (Malus domestica Borkh. cv. Braeburn) suspension cultures and subsequently found to be active in sink tissues. Microsomal proteins were blotted onto Nylon or polyvinylidenedifluoride membranes, and p67 cdpk assayed by in situ-labelling renatured proteins with [γ-32P]ATP; thin-layer electrophoresis/thin-layer chromatography of acid hydrolysates of the 32P-labelled protein band indicated that serine and threonine, but not tyrosine residues were phosphorylated. A detailed analysis of the ion-dependency of p67 cdpk revealed that it was a Ca2+-stimulated, Mg2+-dependent protein kinase. However, p67 cdpk was ten times more active in the presence of 10 mM Mn2+, and these assay conditions were used routinely to increase the sensitivity of the assay. Activity of p67 cdpk was found at high levels in the plasma membrane, and solubilisation experiments with a number of detergents suggested that p67 cdpk is an integral membrane protein. A homologous protein kinase with similar biochemical properties was also present in cell-suspension cultures of pear and maize. In maize (Zea mays L.) plants, sink tissues, such as young expanding leaves of both light-grown and etiolated plants, mature etiolated tissue and roots all had high levels of p67 cdpk activity. However, mature light-grown (source) tissues had barely detectable levels. In etiolated maize leaves and coleoptiles the kinase activity was highest in expanding tissue and decreased as the cells expanded. When etiolated maize plants were exposed to light, the activity of p67 cdpk was reduced to background levels after 8 h. Although p67 cdpk has biochemical properties similar to those of other plant calcium-dependent protein kinases, this is the first identification of a membrane-bound calcium-dependent protein kinase which is specifically active in sink tissues. Received: 14 July 1997 / Accepted: 25 September 1997  相似文献   

16.
Gerhard Thiel  Ralf Weise 《Planta》1999,208(1):38-45
Potassium is taken up by maize (Zea mays L.) coleoptile cells via a typical plant inward rectifier (K ir ). Sufficient conductance of this channel is essential in order to maintain auxin-stimulated cell elongation. It was therefore investigated whether the activity of this channel is subject to direct or indirect control by this growth hormone. Patch-clamp measurements of whole coleoptile protoplasts revealed no appreciable effect of externally applied 10 μM or 100 μM α-naphthaleneacetic acid (NAA) on the activity of K ir over test periods of ≥ 18 or ≥ 8 min, respectively. When, however, K ir was recorded in the cell-attached configiuration and 10 μM NAA administered to the bath medium, the conductance of K ir increased significantly in 13 out of 18 protoplasts over the control. This rise occurred at a fixed protoplast voltage after a lag period of less than 10 min and exhibited no voltage dependency. The absence of response to NAA of protoplasts in the whole-cell configuration indicates that auxin perception and channel control is linked via a soluble cytoplasmic factor and that this mediator is washed out or modified upon perfusion of the cytoplasm with pipette solution. To search for this expected diffusible factor the K ir current was recorded before and after elevation of Ca2+ and H+ in the cytoplasm. In the whole-cell configuration the increase in Ca2+ from a nanomolar value to >1 μM by means of Ca2+-release from the caged precursor Na2-DM-nitrophen left K ir unaffected. The whole-cell K ir conductance was also not affected upon addition of 10 mM Na+-acetate to the bath medium, an operation used to lower the cytoplasmic pH. This excludes a primary role for the known auxin-evoked rise in cytoplasmic Ca2+ and H+ in K ir activity. We postulate that another, as yet unknown, mechanism mediates the auxin-evoked stimulation of the number of active K ir channels in the plasma membrane. Received: 13 May 1998 / Accepted: 9 November 1998  相似文献   

17.
Binding proteins, thought to be auxin receptors, can be solubilised from maize (Zea mays L.) membranes after acetone treatment. From these crude extracts, receptor preparations of over 50% purity can be obtained by a reliable, straight-forward procedure involving three chromatographic steps — anion exchange, gel filtration and high-resolution anion exchange. Such preparations have been used to immunise rats for subsequent production of monoclonal antibodies. By the further step of native polyacrylamide gel electrophoresis the semi-purified preparations yield homogeneous, dimeric (22-kilodalton, kDa) auxin-binding protein, which has been used to produce a polyclonal rabbit antiserum. The preliminary characterisation of this antiserum and of the five monoclonal antibodies is presented. Two of the monoclonal antibodies specifically recognise the major 22-kDa-binding protein polypeptide whilst the other three recognise, in addition, a minor 21-kDa species. All the monoclonal antibodies recognise the polypeptide rather than the glycan side chain and the polyclonal antiserum also recognises deglycosylated binding protein. The antibodies have been used to quantify the abundance of auxinbinding protein in a number of tissues of etiolated maize seedlings. Root membranes contain 20-fold less binding protein than coleoptile membranes.Abbreviations ABP auxin-binding protein - DEAE diethylaminoethyl - Ig immunoglobulin - kDa kilodalton - NAA naphthalene-1-acetic acid - Mr relative molecular mass - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

18.
19.
以烟草(Nicotiana tabacum L.)盛花期花梗薄层为材料,研究营养芽分化的不同时期生长素结合蛋白(ABP1)在组织与细胞中的分布变化,免疫荧光标记结果表明,烟草花梗中ABP1主要分布于表皮及亚表皮1-2层细胞内。不同分化期ABP1在烟草花梗薄层原生质体中的表达不同,细胞分化旺盛期ABP1的表达最强,分化后期ABP1的表达有所减弱;Western blotting结果表明,ABP1多克隆抗血清与烟草花梗薄层细胞及分化过程中26kD蛋白有免疫交叉反应。  相似文献   

20.
Maturation of maize pollen in vitro   总被引:3,自引:0,他引:3  
Summary Maturation of maize pollen was obtained in male reproductive structures cultured in vitro. Immature tassels containing microspores at the mid-uninucleate to late-binucleate stage of development were excised and spikelets, anthers, and/or isolated microspores were cultured on a medium capable of supporting pollen maturation. Microspore mitosis, culminating in the production of starch-filled, trinucleate pollen capable of germination, was observed after 7–15 days, depending on the genotype and stage at which the cultures were initiated. Up to 100%, 70%, and 20% of the cultured spikelets, anthers, and isolated microspores, respectively, produced mature pollen, which germinated, however, at different frequencies (i.e., spikelets, 50–70%; anthers, 5–10%; microspores, <1%). Mature kernels were produced following fertilization with pollen from cultured spikelets and anthers. These procedures provide methods for the in vitro manipulation of a significant phase of the maize life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号