首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The recent reexamination of a tooth‐whorl fossil of Helicoprion containing intact jaws shows that the symphyseal tooth‐whorl occupies the entire length of Meckel's cartilage. Here, we use the morphology of the jaws and tooth‐whorl to reconstruct the jaw musculature and develop a biomechanical model of the feeding mechanism in these early Permian predators. The jaw muscles may have generated large bite‐forces; however, the mechanics of the jaws and whorl suggest that Helicoprion was better equipped for feeding on soft‐bodied prey. Hard shelled prey would tend to slip anteriorly from the closing jaws due to the curvature of the tooth‐whorl, lack of cuspate teeth on the palatoquadrate (PQ), and resistance of the prey. When feeding on soft‐bodied prey, deformation of the prey traps prey tissue between the two halves of the PQ and the whorl. The curvature of the tooth‐whorl and position of the exposed teeth relative to the jaw joint results in multiple tooth functions from anterior to posterior tooth that aid in feeding on soft‐bodied prey. Posterior teeth cut and push prey deeper into the oral cavity, while middle teeth pierce and cut, and anterior teeth hook and drag more of the prey into the mouth. Furthermore, the anterior‐posterior edges of the teeth facilitate prey cutting with jaw closure and jaw depression. The paths traveled by each tooth during jaw depression are reminiscent of curved pathways used with slashing weaponry such as swords and knifes. Thus, the jaws and tooth‐whorl may have formed a multifunctional tool for capturing, processing, and transporting prey by cyclic opening and closing of the lower jaw in a sawing fashion. J. Morphol. 276:47–64, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Two specimens of the peculiar squalid shark,Trigonognathus kabeyai gen. et sp. nov., were collected from the coastal waters of Wakayama and Tokushima, Japan, by bottom trawl at depths of 330 and 360 meters. Shape of teeth similar in both jaws; slender, unicuspid, canine-like, without any cusplets or serrations, with weak thin fold on both lingual and labial sides in anterior teeth on both jaws; tooth at symphysis of each jaw longest. Interspace between teeth very wide. Both jaws triangular in shape. Most of dermal denticles on body and head roughly rhombic, swollen very much near central part, with about 10–40 facets on the dorsal surface of its crown. Preoral snout length very short. Many small organs considered to be photophores present mainly on ventral surfaces of head and body.  相似文献   

3.
The well preserved anterior upper and lower jaw fragment of an adult specimen of Coloborhynchus robustus (Pterosauria: Ornithocheiridae), SMNK 2302 PAL, allowed investigations of the replacement pattern of the dentition macroscopically and by using CT scans. The quantification of the dentition by Zahnreihen, Z-Spacing, and replacement waves indicates a complex pattern of different replacement stages in which large gaps within the dentition were avoided. The specialized prey-catching apparatus of Coloborhynchus thus could retain its function even following tooth replacement. The replacement process in the specimen took about 2/3 of the total life-time of a tooth, and damaged teeth in the anterior jaw region may have been replaced more rapidly than posterior teeth. The distolingual replacement of the functional teeth delayed the time of their shedding in comparison with the circular resorption present in crocodiles. In contrast to these, the distolingual position of the replacement tooth did not decrease the biomechanical stability of the functional tooth, which can also be observed as a convergence in other thecodont dentitions, e.g., recent carnivore mammals. Teeth were shed when their replacement had reached about 60% of the full-grown height. A comparison of the observed pattern is constricted by the preservation and preparation of other specimens. Unfortunately, no known specimen in public collections reaches the quality of Coloborhynchus robustus, SMNK 2302 PAL, so that comparable patterns in other specimens are not likely to be detected.  相似文献   

4.
The anterior tips of associated upper and lower jaws of a pterosaur from the Lower Cretaceous of Brazil are described and assigned to the taxonColoborhynchus in the family Ornithocheiridae. It is characterized by the shape and position of the sagittal crest on the upper and lower jaw, the arrangement and length of the teeth and the spoon-like lateral expansion of the anterior parts of the jaws. It closely resemblesColoborhynchus wadleighi from North America andColoborhynchus clavirostris from England. Diagnostic anatomical characteristics permit a revision of the genusTropeognathus, which is shown here to be a junior synonym of other described taxa.Tropeognathus mesembrinus is referred toCriorhynchus andT. robustus toColoboryhnchus. Consistent anatomical features enable the new jaw fragment to be assigned toColoborhynchus robustus.   相似文献   

5.
The dental anatomy of elasmobranch fishes (sharks, rays and relatives) creates a functional system that is more dynamic than that of mammalian dentition. Continuous dental replacement (where new teeth are moved rostrally to replace older ones) and indirect fibrous attachment of the dentition to the jaw allow teeth to reorient relative to the jaw over both long- and short-term scales, respectively. In this study, we examine the processing behavior and dental anatomy of the lesser electric ray Narcine brasiliensis (Olfers, 1831) to illustrate that the freedom of movement of elasmobranch dentition allows a functional flexibility that can be important for complex prey processing behaviors. From static manipulations of dissected jaws and observations of feeding events in live animals, we show that the teeth rotate during jaw protrusion, resulting in a secondary grasping mechanism that likely serves to hold prey while the buccal cavity is flushed free of sediment. The function of teeth is not always readily apparent from morphology; in addition to short-term reorientation, the long-term dental reorientation during replacement allows a given tooth to serve multiple functions during tooth ontogeny. Unlike teeth inside the mouth, the cusps of external teeth (on the portion of the tooth pad that extends past the occlusal plane) lay flat, such that the labial faces act as a functional battering surface, protecting the jaws during prey excavation.  相似文献   

6.
Morphology, occlusal surface topography, macrowear, and microwear features of parrotfish pharyngeal teeth were investigated to relate microstructural characteristics to the function of the pharyngeal mill using scanning electron microscopy of whole and sectioned pharyngeal jaws and teeth. Pharyngeal tooth migration is anterior in the lower jaw (fifth ceratobranchial) and posterior in the upper jaw (paired third pharyngobranchials), making the interaction of occlusal surfaces and wear-generating forces complex. The extent of wear can be used to define three regions through which teeth migrate: a region containing newly erupted teeth showing little or no wear; a midregion in which the apical enameloid is swiftly worn; and a region containing teeth with only basal enameloid remaining, which shows low to moderate wear. The shape of the occlusal surface alters as the teeth progress along the pharyngeal jaw, generating conditions that appear suited to the reduction of coral particles. It is likely that the interaction between these particles and algal cells during the process of the rendering of the former is responsible for the rupture of the latter, with the consequent liberation of cell contents from which parrotfish obtain their nutrients.  相似文献   

7.
Rhynchosaurs were key herbivores over much of the world in the Middle and Late Triassic, often dominating their faunas ecologically, and much of their success may relate to their dentition. They show the unique ankylothecodont mode of tooth implantation, with deep roots embedded in the bone of the jaw and low crowns that were rapidly worn down in use. During growth, the main area of oral food processing, located in the middle and posterior portions of the occlusal surfaces of the jaws, moved posteriorly relative to the anterior tips of the jaws, which curved up. As the maxilla and dentary grew by addition of new bone posteriorly, the dental lamina fed in new teeth at the back of the tooth rows. CT scanning of the holotype skull of Bentonyx sidensis from the Middle Triassic of England reveals previously concealed details of the dentition. Together with new dentary material from the same location, this has enabled us to examine the tooth replacement process and elucidate ontogenetic changes in dentition and jaw morphology as the animals aged. There were major changes in rhynchosaur anatomy and function through their evolutionary history, with the early forms of the Middle Triassic dying out before or during the Carnian Pluvial Episode (233–232 Ma), and the subclade Hyperodapedontinae, with broad skulls and adaptations to chop tough vegetation, subsequently diversifying worldwide in a successful ecological expansion until their global extinction 227–225 Ma.  相似文献   

8.
Two species of jaw bearing Ampharetidae (Adercodon pleijeli (Mackie 1994) and Ampharete sp. B) were investigated in order to describe the microanatomy of the mouth parts and especially jaws of these enigmatic polychaetes. The animals of both studied species have 14–18 mouth tentacles that are about 30 µm in diameter each. In both species, the ventral pharyngeal organ is well developed and situated on the ventral side of the buccal cavity. It is composed of a ventral muscle bulb and investing muscles. The bulb consists of posterior and anterior parts separated by a deep median transversal groove. In both species, the triangular teeth or denticles are arranged in a single transversal row on the surface of the posterior part of the ventral bulb just in front of its posterior edge. There are 36 denticles in Adercodon pleijeli and 50 in Ampharete sp. B. The height of the denticles (6–12 µm) is similar in both species. Each tooth is composed of two main layers. The outer one (dental) is the electron‐dense sclerotized layer that covers the tooth. The inner one consists of long microvilli with a collagen matrix between them. The thickness of the dental layer ranges from 0.95 to 0.6 µm. The jaws of the studied worms may play a certain role in scraping off microfouling. The fine structure of the jaws in Ampharetidae is very similar to that of the mandibles of Dorvilleidae, the mandibles and the maxillae of Lumbrineridae, Eunicidae and Onuphidae, and the jaws of other Aciculata. This type of jaw is characterized by unlimited growth and the absence of replacement. The occurrence of jaws in a few smaller Ampharetidae is considered as an apomorphic state.  相似文献   

9.
The development and replacement of teeth in the frog Rana temporaria is analyzed by dividing the life cycle of the tooth into a number of stages. These stages are identified by the examination of alizarin whole mounts. The dentition in this species is fairly complete and the percentage of functional loci is approximately 74. The teeth in alternate loci are usually at about the same stage in development. The low percentage of non-functional loci is accounted for by the retention of functional teeth over a large fraction of the total life cycle time and the relatively rapid ankylosis of replacement teeth. It is suggested that tooth replacement is essentially a process which involves teeth in alternate loci and that the replacement waves (which connect alternate loci) run parallel to the longitudinal axis of the jaw and are of infinite length. This basic pattern is obscured by many breaks which occur in the replacement waves. The presence of such breaks may be accounted for by variations in the time intervals between the successive stimuli which initiate the Zahnreihen, or simply by the acceleration or deceleration of the development of teeth in one or more loci.  相似文献   

10.
Sicyopterus japonicus (Teleostei, Gobiidae) possesses a unique upper jaw dentition different from that known for any other teleosts. In the adults, many (up to 30) replacement teeth, from initiation to attachment, are arranged orderly in a semicircular-like strand within a capsule of connective tissue on the labial side of each premaxillary bone. We have applied histological, ultrastructural, and three-dimensional imaging from serial sections to obtain insights into the distribution and morphological features of the dental lamina in the upper jaw dentition of adult S. japonicus. The adult fish has numerous permanent dental laminae, each of which is an infolding of the oral epithelium at the labial side of the functional tooth and forms a thin plate-like structure with a wavy contour. All replacement teeth of a semicircular-like strand are connected to the plate-like dental lamina by the outer dental epithelium and form a tooth family; neighboring tooth families are completely separated from each other. The new tooth germ directly buds off from the ventro-labial margin of the dental lamina, whereas no distinct free end of the dental lamina is present, even adjacent to this region. Cell proliferation concentrated at the ventro-labial margin of the dental lamina suggests that this region is the site for repeated tooth initiation. During tooth development, the replacement tooth migrates along a semicircular-like strand and eventually erupts through the dental lamina into the oral epithelium at the labial side of the functional tooth. This unique thin plate-like permanent dental lamina and the semicircular-like strand of replacement teeth in the upper jaw dentition of adult S. japonicus probably evolved as a dental adaptation related to the rapid replacement of teeth dictated by the specialized feeding habit of this algae-scraping fish.  相似文献   

11.
Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates) evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa), suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified for teeth in oral jaws of the first jawed vertebrate, and subsequently deployed as jaws enveloped teeth on novel pharyngeal jaws. Our data highlight an amazing modularity of jaws and teeth as they coevolved during the history of vertebrates. We exploit this diversity to infer a core dental gene network, common to the first tooth and all of its descendants.  相似文献   

12.
Although there are many reports of tooth replacement patterns in lower vertebrates, few show the range of pattern to be found in a number of similar aged specimens of one species. Fifteen specimens of Caiman sclerops, head length 4–5 cms, were examined by a radiographic technique and their tooth replacement patterns analysed. Whole head radiography and dissected head radiographs were compared and the resulting tooth replacement waves were found to be comparable. Wave replacement (sensu Edmund, '60) in odd and even tooth positions in the tooth row was observed in all the specimens examined. Whereas most waves passed in a cephalad direction, wave reversal (caudad) was also observed, particularly in the anterior parts of the jaws. In some specimens simple alternation in tooth replacement was observed, particularly in the mid-portion of each quadrant. The smooth, age-related change-over from cephalad to caudad demonstrated by Edmund ('62) in captive Alligator mississippiensis was not observed in wild specimens of Caiman sclerops.  相似文献   

13.
The teeth of captured specimens, of prepared museum specimens, and of high-speed videotape images of the white shark, Carcharodon carcharias, were compared with respect to (1) deviation of each tooth from the animal's midline and (2) the crown angle of the functional teeth along the jaw margin. Tooth position was measured either directly using a meter stick apparatus or derived from tracings of the video footage. Tooth positions were not statistically unique in any region of the upper or lower jaw but demonstrated less variability in crown angle within 30° of the midline (71.48° ± 10°). Videotape analysis of feeding sharks indicated an 8.7° increase in crown angle of the centermost teeth during bites where the jaws were closed through an angle of 20–35° and a 15.7° reduction in this same parameter during jaw adduction through 35° or more. Such changes in tooth orientation (relative to the rear of the buccal cavity) are ascribed to flexure of the cartilaginous jaws and cranium by the cranial musculature and possibly also to sliding of the tooth bed over the jaw. Outward rotation of the teeth and jaw rami describes a plucking action during feeding or prey sampling, while larger bites rotate the frontmost teeth inward towards the gullet. Functionally, this may make the teeth more effective at grasping small prey items or gouging chunks from larger prey. However, testing of the load required to remove teeth showed no significant increase in tensile resistance with reduced crown angle. © 1995 Wiley-Liss, Inc.  相似文献   

14.
第四纪响蜥(Tinosaurus)化石的首次发现   总被引:2,自引:0,他引:2  
在陕西洛南张坪洞穴的第四系中采得一些响蜥类(Tinosaurus)化石,有保存相当完好的上下齿骨和齿列,这是响蜥在第四纪的首次报道,使该属化石的地史分布从早第三纪延伸到第四纪。新材料下颌骨较粗壮,但个体很小,有齿间沟,同时兼具亚洲种及北美种的某些特征,因此建立一新种Tinosaurus luonanensis sp.nov.。  相似文献   

15.
The jaw oflater selenodont artiodactyls is significantly longer, relative to jaw width and tooth size, than in the earliest members of this group. Although this change has a number of potentially beneficial effects, there is at least one adverse effect. A longer jaw reduces the width-to-length ratio, which eventually limits the length of the cheek tooth row at its anterior end. Buttressing the skull against torsional forces is best accomplished by tracts of bone that join the anterior and posterior divisions of the skull and that bridge the weak zone at the orbital region. As the jaw lengthens, some of the anterior premolars necessarily come to lie in front of the most anterior of these buttressing tracts. Bite force at these teeth cannot be transferred in an optimal manner from the anterior to the posterior divisions of the skull, torsion is less well resisted, and one or more anterior premolars are lost, even though there is more than enough space because of the presence of a long diastema.  相似文献   

16.
Large dogs are able to deliver a powerful bite that generates considerable stress in the anterior, prehensile part of the jaws. In the upper jaw most of the biting force is borne by the anterior teeth. The palatal mucosa provides little resistance to deformation. It is easily compressed and rather mobile. In the lower jaw, the mucosa covering the upper surface of the symphysis receives a sizeable portion of the biting force. It is firmly attached to the underlying bone and possesses special connective tissue arrangements that enable it to transduce locally applied pressure to tension distributed over a broad area.  相似文献   

17.
The dentitions of lamniform sharks possess a unique heterodonty, the lamnoid tooth pattern. However, in embryos, there are 'embryonic' and 'adult' dentitions. The teeth in the embryonic dentition are peg-like and appear to be attached to the jaw in an acrodont fashion. The adult dentition is characterized by the presence of replacement tooth series with the lamnoid tooth pattern. The embryonic–adult transition in dentitions appears at around 30–60cm TL. Tooth replacement generally begins before birth in embryos with adult dentitions. The adult dentition becomes functional just before or after parturition. An embryo of one species (Lamna nasus) shows a tooth directly on the symphysis of the upper jaws, marking the first record of a medial tooth for the order Lamniformes.  相似文献   

18.
Atlantic Cutlassfish, Trichiurus lepturus, have large, barbed, premaxillary and dentary fangs, and sharp dagger-shaped teeth in their oral jaws. Functional teeth firmly ankylose to the dentigerous bones. We used dry skeletons, histology, SEM, and micro-CT scanning to study 92 specimens of T. lepturus from the western North Atlantic to describe its dentition and tooth replacement. We identified three modes of intraosseous tooth replacement in T. lepturus depending on the location of the tooth in the jaw. Mode 1 relates to replacement of premaxillary fangs, in which new tooth germs enter the lingual surface of the premaxilla, develop horizontally, and rotate into position. We suggest that growth of large fangs in the premaxilla is accommodated by this horizontal development. Mode 2 occurs for dentary fangs: new tooth germs enter the labial surface of the dentary, develop vertically, and erupt into position. Mode 3 describes replacement of lateral teeth, in which new tooth germs enter a trench along the crest of the dentigerous bone, develop vertically, and erupt into position. Such distinct modes of tooth replacement in a teleostean species are unknown. We compared modes of replacement in T. lepturus to 20 species of scombroids to explore the phylogenetic distribution of these three replacement modes. Alternate tooth replacement (in which new teeth erupt between two functional teeth), ankylosis, and intraosseous tooth development are plesiomorphic to Bluefish + other Scombroidei. Our study highlights the complexity and variability of intraosseous tooth replacement. Within tooth replacement systems, key variables include sites of formation of tooth germs, points of entry of tooth germs into dentigerous bones, coupling of tooth germ migration and bone erosion, whether teeth develop horizontally or immediately beneath the tooth to be replaced, and how tooth eruption and ankylosis occur. Developmentally different tooth replacement processes can yield remarkably similar dentitions.  相似文献   

19.
The study of teeth of the lower jaws of Amia calva and Polypterus senegalus, with non -destructive X-ray tomography, has revealed that there are dentine folds in the tooth pulp cavity in both species. These folds are simple and present only in the base of the pulp cavity where they strengthen the fixation of teeth on the jaw. So the teeth of these two basal actinopterygian taxa have a simplexodont type of plicidentine like the extinct †Cheirolepis and various extant teleostean predators, whereas the extant Lepisosteids, the sister group of Amiidae, have polyplocodont plicidentine. The phylogenetic/adaptive significance of this simplexodont plicidentine is discussed.  相似文献   

20.
The pharyngeal and oral teeth of the fish Tilapia mossambica (Peters) were examined with a scanning microscope. It appeared that the dorsal pharyngeal teeth form a peculiar hooklike extension at the tip, whereas the ventral pharyngeal teeth tend to curve in a posterior direction. The two lateral flanges at the tip of the ventral teeth are probably the areas of contact with the dorsal teeth when the latter are pressed down during sound production or feeding. However, the oral teeth develop along a different line. A part from villiform teeth the upper and lower jaws also develop tricuspid and bicuspid oral teeth, with the bicuspids concentrated mainly along the outer edge of the jaw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号