共查询到20条相似文献,搜索用时 6 毫秒
1.
生物浸矿反应器中的微生物种群结构及其中可培养微生物的特征 总被引:2,自引:0,他引:2
【目的】本文旨在了解生物浸矿反应器中的微生物种群结构及其中可培养微生物的特征。【方法】通过构建微生物冶金反应器中矿浆原样的16S rRNA基因文库,测定16S rRNA基因序列,分析矿浆中种群结构。同时在不同培养条件下,对样品进行富集培养,分离获得纯菌株;并对各个菌株的16S rRNA基因序列,生理生化特征及对不同矿物的氧化能力进行了分析。【结果】研究中所选生物浸矿反应器中主要的微生物物种有细菌:Leptospirillum sp.,Sulfobacillus sp.,Acidithiobacillus sp.,Spingomonas sp.及古菌Sulfolobus sp.,Ferroplasma sp.等菌属。同时分离出5株纯菌株,这些菌分别与Acidithiobacillus thiooxidans,Acidithiobacillus caldus,Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum,Sulfobacillus thermosul fidooxidans相似。分离获得的菌株具有氧化硫或二价铁和不同硫化矿的能力。【结论】生物浸矿反应器是个微生物种类相对简单的生境,利用非培养和培养技术全面地了解生物浸矿体系中的微生物群落及其生理、浸矿特性,有利于洞察生物浸矿过程中微生物种群结构,强化控制种群组成及浸矿活性,从而提高生物湿法冶金的效率。 相似文献
2.
Probing the archaeal diversity of a mixed thermophilic bioleaching culture by TGGE and FISH 总被引:1,自引:0,他引:1
Deirdre Mikkelsen Ulrike Kappler Alastair G. McEwan Lindsay I. Sly 《Systematic and applied microbiology》2009,32(7):501-513
The archaeal community present in a sample of Mixed Thermophilic Culture-B (MTC-B) from a laboratory-scale thermophilic bioleaching reactor was investigated by temperature gradient gel electrophoresis (TGGE) and fluorescence in situ hybridisation (FISH). Both techniques were specifically adapted for use on native state bioleaching samples, with a view to establishing convenient means for monitoring culture composition. Using the TGGE protocol developed, the relative species composition of the thermophilic bioleaching sample was analysed, and included four phylotypes belonging to the Sulfolobales, which were related to Stygiolobus azoricus, Metallosphaera sp. J1, Acidianus infernus and Sulfurisphaera ohwakuensis. However, the St. azoricus-like phylotype was difficult to resolve and some micro-heterogeneity was observed within this phylotype. Specific FISH probes were designed to qualitatively assess the presence of the phylotypes in MTC-B. The sample was dominated by Sf. ohwakuensis-like Archaea. In addition, the St. azoricus-like, Metallosphaera species-like and Acidianus species-like cells appeared in similar low abundance in the community. Most strikingly, FISH identified Sulfolobus shibatae-like cells present in low numbers in the sample even though these were not detected by PCR-dependent TGGE. These results highlight the importance of using more than one molecular technique when investigating the archaeal diversity of complex bioleaching reactor samples. 相似文献
3.
Methanogenesis in thermophilic biogas reactors 总被引:2,自引:0,他引:2
Birgitte Kiær Ahring 《Antonie van Leeuwenhoek》1995,67(1):91-102
Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most probable number (MPN) technique with acetate or hydrogen as substrate were further found to vary depending on the loading rate and the stability of the reactor. The numbers of methanogens counted with antibody probes in one of the reactor samples was 10 times lower for the hydrogen-utilizing methanogens compared to the counts using the MPN technique, indicating that other non-reacting methanogens were present. Methanogens that reacted with the probe againstMethanobacterium thermoautotrophicum were the most numerous in this reactor. For the acetate-utilizing methanogens, the numbers counted with the antibody probes were more than a factor of 10 higher than the numbers found by MPN. The majority of acetate utilizing methanogens in the reactor wereMethanosarcina spp. single cells, which is a difficult form of the organism to cultivatein vitro. No reactions were observed with antibody probes raised againstMethanothrix soehngenii orMethanothrix CALS-1 in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate into methane. When the concentration of acetate was less than approx. 1 mM, most of the acetate was oxidized via a two-step mechanism (syntrophic acetate oxidation) involving one organism oxidizing acetate into hydrogen and carbon dioxide and a hydrogen-utilizing methanogen forming the products of the first microorganism into methane. In thermophilic biogas reactors, acetate oxidizing cultures occupied the niche ofMethanothrix species, aceticlastic methanogens which dominate at low acetate concentrations in mesophilic systems. Normally, thermophilic biogas reactors are operated at temperatures from 52 to 56° C. Experiments using biogas reactors fed with cow manure showed that the same biogas yield found at 55° C could be obtained at 61° C after a long adaptation period. However, propionate degradation was inhibited by increasing the temperature. 相似文献
4.
Lexian Xia Paulina Uribe Xinxing Liu Chu Yu Liyuan Chai Jianshe Liu Wenqin Qiu Guanzhou Qiu 《World journal of microbiology & biotechnology》2013,29(2):275-280
The bioleachings of chalcopyrite ore were compared after inoculating different cultures enriched from the original acid mine drainage sample. The results showed that the higher bioleaching performance was achieved for inoculation with the enrichment D (0.5 % S, 2 % iron and 1 % chalcopyrite) compared to other enrichment systems. The generated ferric precipitation during bioleaching had a key influence on the final copper extraction. After enrichment, higher ratio of iron-oxidizer and higher ratio of sulfur-oxidizer existed in enrichment B and C, respectively. These caused the different bioleaching behaviours from other systems. Maintaining a suitable equilibrium between iron- and sulfur-oxidizers is significant to decrease ferric precipitation or postpone its formation, finally prolong efficient bioleaching period and improve copper extraction. 相似文献
5.
Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation of Archaea by analysis of amplified 16S rRNA genes. In addition to the three solfataras and the neutral hot spring, 10 soil samples in transects of the soil adjacent to the solfataras were analysed using terminal restriction fragment length polymorphism (t-RFLP). The sequence data from the clone libraries in combination with 14 t-RFLP profiles revealed a high abundance of clones clustering together with sequences from the nonthermophilic I.1b group of Crenarchaeota. The archaeal diversity in one solfatara was high; 26 different RFLP patterns were found using double digestion of the PCR products with restriction enzymes AluI and BsuRI. The sequenced clones from this solfatara belonged to Sulfolobales, Thermoproteales or were most closest related to sequences from uncultured Archaea. Sequences related to group I.1b were not found in the neutral hot spring or the hyperthermophilic solfatara (90 degrees C). 相似文献
6.
7.
8.
Toxicity of flotation reagents to moderately thermophilic bioleaching microorganisms 总被引:3,自引:0,他引:3
The toxicity of 15 flotation reagents (including xanthates, carbamates, thiophosphates, a mercaptobenzthiazole and a frothing reagent) used for concentrating sulfide minerals to five species of mineral-oxidising, moderately thermophilic and acidophilic microorganisms was assessed. The acidophiles tested included four bacteria (a Leptospirillum isolate, Acidimicrobium ferrooxidans, Acidithiobacillus caldus and a Sulfobacillusisolate) and one archaeon (a Ferroplasma isolate). There was wide variation both in terms of the relative toxicities of the different flotation reagents and the sensitivities of the microorganisms tested. In general, the dithiophosphates and the mercaptobenzothiol were the most toxic, while the Leptospirillum and Ferroplasma isolates were the most sensitive of the acidophilic microorganisms. The significance of these findings, in view of the expanding application of ore concentrates bioprocessing, is discussed. 相似文献
9.
Aims: To isolate Ferroplasma thermophilum L1T from a low pH environment and to understand its role in bioleaching of chalcopyrite.
Methods and Results: Using serial dilution method, a moderately thermophilic and acidophilic ferrous iron-oxidizing archaeon, named L1T , was isolated from a chalcopyrite-leaching bioreactor. The morphological, biochemical and physiological characteristics of strain L1T and its role in bioleaching of chalcopyrite were studied. Strain L1T was a nonmotile coccus that lacked cell wall. Strain L1T had a temperature optimum of 45°C and the optimum pH for growth was 1·0. Strain L1T was capable of chemomixotrophic growth on ferrous iron and yeast extract. Results of fatty acid analysis, DNA–DNA hybridization, G+C content, and analysis based on 16S rRNA gene sequence indicated that strain L1T should be grouped in the genus Ferroplasma , and represented a new species, Ferroplasma thermophilum . Ferroplasma thermophilum in combination with Acidithiobacillus caldus and Leptospirillum ferriphilum could improve the copper dissolution in bioleaching of chalcopyrite.
Conclusions: A novel extremely acidophilic, moderately thermophilic archaeon isolated from a bioleaching reactor has been identified as F. thermophilum that played an important role in bioleaching of chalcopyrite at low pH.
Significance and Impact of the Study: This study contributes to understand the characteristics of F. thermophilum L1T and its role in bioleaching of sulfide ores. 相似文献
Methods and Results: Using serial dilution method, a moderately thermophilic and acidophilic ferrous iron-oxidizing archaeon, named L1
Conclusions: A novel extremely acidophilic, moderately thermophilic archaeon isolated from a bioleaching reactor has been identified as F. thermophilum that played an important role in bioleaching of chalcopyrite at low pH.
Significance and Impact of the Study: This study contributes to understand the characteristics of F. thermophilum L1
10.
Cristian Coman Bogdan Drugă Adriana Hegedus Cosmin Sicora Nicolae Dragoş 《Extremophiles : life under extreme conditions》2013,17(3):523-534
The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs. 相似文献
11.
为了优化浸出工艺,研究了pH对浸矿过程主要微生物种群结构的影响。用中度嗜热混合菌槽浸黄铜矿精矿,在不控制pH,控制pH为2.5及控制pH为1.2时,应用PCR-RFLP(限制性酶切片段长度多态性)方法对上述浸出条件下的细菌群落动态变化进行研究。结果表明,浸出体系只有两种微生物,一种为Acidithiobacillus Caldus,一种为Leptospirillum ferriphilum。pH对群落结构有明显影响。不控制pH时,浸出开始阶段At.caldus是优势种群,占群落的96%,随着浸出的进行,L.ferriphilum增多,在浸出后期代替At.caldus成为优势菌种,占69%。控制pH时,L.ferriphilum始终占主导地位,同时发现pH为2.5时At.caldus在群落中的丰度比pH为1.2时高。 相似文献
12.
Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate 总被引:1,自引:0,他引:1
The nature of the mineral–bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching
processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular
polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743–2747, 1998). On this respect, despite Acidithiobacilli—a ubiquitous bacterial genera in bioleaching processes (Rawlings, Microb Cell
Fact 4(1):13, 2005)—has long been recognized as secreting bacteria (Jones and Starkey, J Bacteriol 82:788–789, 1961; Schaeffer and Umbreit, J Bacteriol 85:492–493, 1963), few studies have been carried out in order to clarify the nature and the role of the secreted protein component: the secretome.
This work characterizes for the first time the sulfur (meta)secretome of Acidithiobacillus thiooxidans strain DSM 17318 in pure and mixed cultures with Acidithiobacillus ferrooxidans DSM 16786, identifying the major component of these secreted fractions as a single lipoprotein named here as Licanantase.
Bioleaching assays with the addition of Licanantase-enriched concentrated secretome fractions show that this newly found lipoprotein
as an active protein additive exerts an increasing effect on chalcopyrite bioleaching rate. 相似文献
13.
Ai Chenbing Yan Zhang Chai Hongsheng Gu Tianyuan Wang Junjun Chai Liyuan Qiu Guanzhou Zeng Weimin 《Journal of industrial microbiology & biotechnology》2019,46(8):1113-1127
Journal of Industrial Microbiology & Biotechnology - Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales, such as Metallosphaera sedula, are metabolically versatile... 相似文献
14.
Development of thermophilic methanogenic sludge in compartmentalized upflow reactors 总被引:5,自引:0,他引:5
The characteristics and development of thermophilic anaerobic sludge in upflow staged sludge bed (USSB) reactors were studied. The compartmentalized reactors were inoculated with partially crushed mesophilic granular sludge and then fed with either a mixture of volatile fatty acids (VFA) or a mixture of sucrose and VFA. The staged degradation of the soluble substrate in the various compartments led to a clear segregation of specific types of biomass along the height of the reactor, particularly in reactors fed with the sucrose-VFA mixture. Both the biological as well as the physical properties of the cultivated sludge were affected by the fraction of nonacidified substrate. The sludge in the first compartment of the reactor treating the sucrose-VFA mixture was whitish and fluffy, most likely resulting from the development of acidifying bacteria. Sludge granules which developed in the top part of this reactor possessed the highest acetogenic and methanogenic activity and the highest granule strength as well. The experiments also revealed that the conversion of the sucrose-VFA mixture into methane gradually deteriorated at prolonged operation at high organic loading rates (50 to 100 g COD . L(-1) . day(-1)). Stable long-term performance of a reactor can only be achieved by preserving the sludge segregation along the height of the reactor. In the reactor fed solely with the VFA mixture little formation of granular sludge occurred. In this reactor, large differences in sludge characteristics were also observed along the reactor height. Li(+)-tracer experiments indicated that the hydraulic regime in the USSB reactor is best characterized by a series of at least five completely mixed reactors. The formation of granular sludge was found to influence the liquid flow pattern. (c) 1996 John Wiley & Sons, Inc. 相似文献
15.
This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop. 相似文献
16.
Over the past 35 years, researchers have explored deep-sea hydrothermal vent environments around the globe and studied a number of archaea, their unique metabolic and physiological properties, and their vast phylogenetic diversity. Although the pace of discovery of new archaeal taxa, phylotypes and phenotypes in deep-sea hydrothermal vents has slowed recently, bioinformatics and interdisciplinary geochemistry-microbiology approaches are providing new information on the diversity and community composition of archaea living in deep-sea vents. Recent investigations have revealed that archaea could have originated and dispersed from ancestral communities endemic to hydrothermal vents into other biomes on Earth, and the community structure and productivity of chemolithotrophic archaea are controlled primarily by variations in the geochemical composition of hydrothermal fluids. 相似文献
17.
Spolaore P Joulian C Gouin J Morin D d'Hugues P 《Applied microbiology and biotechnology》2011,89(2):441-448
During the Bioshale European project, a techno-economic study of the bioleaching of a copper concentrate originating from
a black shale ore was carried out. This concentrate is a multi-mineral resource in which the copper sulphides are mainly chalcocite,
covellite, bornite and chalcopyrite. The experiments undertaken to produce the techno-economic data were also an opportunity
to carry out more fundamental research. The objective of this work was to combine the results of the bioleaching experiments,
in terms of copper recovery, with the results of bacterial community monitoring and mineralogy residue analysis. Batch and
continuous bioleaching tests were carried out with 10% solids, at 42 °C and with a pH between 1.2 and 1.6. Final copper recovery
was higher in batch cultures than in continuous mode (>95% vs. 91%). Mineralogical analysis showed that the limiting factor
for copper recovery was incomplete chalcopyrite dissolution in both cases. However, chalcopyrite was even less dissolved in
continuous conditions. This was also related to a variation in bacterial community structure. The population in all tests
was composed of Acidithiobacillus caldus, Leptospirillum ferriphilum and one or two species of Sulfobacillus (Sulfobacillus thermosulfidooxidans and sometimes Sulfobacillus benefaciens), but Sulfobacillus and more generally sulphur oxidizers were more represented in batch mode. It was proposed that due to their capacity to reduce
inorganic compounds, sulphur oxidizers may be efficient in limiting chalcopyrite surface hindering. It may help to better
dissolve this mineral and reach a better copper recovery. 相似文献
18.
Zhu W Xia JL Yang Y Nie ZY Zheng L Ma CY Zhang RY Peng AA Tang L Qiu GZ 《Bioresource technology》2011,102(4):3877-3882
The sulfur oxidation activities of four pure thermophilic archaea Acidianus brierleyi (JCM 8954), Metallosphaera sedula (YN 23), Acidianus manzaensis (YN 25) and Sulfolobus metallicus (YN 24) and their mixture in bioleaching chalcopyrite were compared. Meanwhile, the relevant surface sulfur speciation of chalcopyrite leached with the mixed thermophilic archaea was investigated. The results showed that the mixed culture, with contributing significantly to the raising of leaching rate and accelerating the formation of leaching products, may have a higher sulfur oxidation activity than the pure cultures, and jarosite was the main passivation component hindering the dissolution of chalcopyrite, while elemental sulfur seemed to have no influence on the dissolution of chalcopyrite. In addition, the present results supported the former speculation, i.e., covellite might be converted from chalcocite during the leaching experiments, and the elemental sulfur may partially be the derivation of covellite and chalcocite. 相似文献
19.
从煤堆废水中分离得到3株嗜温嗜酸硫氧化细菌.这3株菌株为革兰氏阴性、菌体大小0.4~0.7 μm×1~2 μm、短杆状运动细菌,其最适生长温度为 30 ℃和最适生长pH 2.0~2.5.它们能够利用元素硫,硫代硫酸钠和连四硫酸钾为能源进行自养生长,不能利用有机物质以及硫酸亚铁、黄铁矿和黄铜矿等无机物质作为能源生长.细菌的形态、生理生化特性研究以及基于16S rRNA序列同源性构建的系统发育树结果表明,这3株细菌初步鉴定为氧化硫硫杆菌.氧化硫硫杆菌能够通过产酸有效促进黄铜矿的浸出速率和浸出率. 相似文献
20.
Denecke M Eilmus S Röder N Roesch C Bothe H 《Applied microbiology and biotechnology》2012,93(4):1725-1734
The diversity of the microbial community was identified in two lab-scale, ideally mixed sequencing batch reactors which were
run for 115 days. One of the reactors was intermittently aerated (2 h aerobically/2 h anaerobically) whereas the other was
consistently aerated. The amount of biomass as dry matter, the degradation of organic carbon determined by chemical oxygen
demand and nitrogen-degradation activity were followed over the operation of the two reactors and did not show significant
differences between the two approaches at the end of the experiment. At this point, the composition of the microbial community
was determined by a terminal restriction fragment length polymorphism approach using multiple restriction enzymes by which
organisms were retrieved to the lowest taxonomic level. The microbial composition was then significantly different. The species
richness was at least five-fold higher in the intermittently aerated reactor than in the permanently kept aerobic approach
which is in line with the observation that ecosystem disturbances result in higher diversity. 相似文献