首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Extracellular neutral proteinase was produced in 10 l and 240 l batch cultivations of Bacillus isolate X-3, identified as B. cereus and deposited as DSM 3101. The enzyme concentration was about 37–47 mg/l in the fermentation broth. The enzyme was extracted from the medium by adsorption chromatography with Amberlite XAD-7-resin, and further purified by acetone precipitation and affinity chromatography. The mol. wt. is 35 000 Da. The enzyme is thermostabilized by calcium, inhibited by EDTA and o-phenanthrolin and has its pH-optimum at pH 6.8. The specific activity is 4.36·10-4 kat·mg-1 at 35°C and the k cat/K m on FAGLA (furylacryloyl-glyleu-NH2) is 2.25·104 M-1 s-1 at 30°C, pH 6.8. The proteinase is stable up to 60°C. The N-terminal amino acid sequence exhibits a high sequence homology (63%) to thermolysin and a low homology (18%) to B. subtilis neutral protease A. The enzyme may therefore be suitable for structural comparison with thermolysin in order to study factors affecting thermostability.  相似文献   

2.
A bacterium, Azotobacter chroococcum 4A1M, isolated from a soil sample, produced an alginate-decomposing enzyme in the culture broth. The enzyme was purified to an electrophoretically homogeneous state. The purified enzyme showed maximum activity at pH 6.0 and 60°C;it was stable up to 60°C at pH 6.0 and activated by Ca2+ and inhibited strongly by Hg2+. The molecular mass of the enzyme was estimated to be 23 kDa by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and 24 kDa by gel filtration. Therefore, the enzyme was considered to be monomeric. The NH2-terminal amino acid sequence was determined to be H2N-Ala-Ser-Ile-Ala-Ile-Thr-Asn-Pro-Gly-Phe. The enzyme reacted only on the polymannuronate block of alginic acid, and two main reaction products were obtained when short-chain polymannuronate was used as a substrate. The degrees of polymerization of the two products were three and two respectively.  相似文献   

3.
Summary Thermoactinomyces thalpophilus No. 15 produced an extracellular pullulanase in an aerobic fermentation with soluble starch, salts, and complex nitrogen sources. Acetone fractionation, ion-exchange chromatography, and gel filtration purified the enzyme from cell-free broth 16-fold to an electrophoretically homogeneous state (specific activity, 1352 U/mg protein; yield, 4%). The purified enzyme (estimated MW 79 000) was optimally active at pH 7.0 and 70°C and retained 90% relative activity at 80°C (30 min) in the absence of substrate. The enzyme was activated by Co2+, inhibited by Hg2+, and exhibited enhanced stability in the presence of Ca2+. The enzyme hydrolyzed pullulan (K m 0.32%, w/v) forming maltotriose, and hydrolyzed amylopectin (K m 0.36%, w/v), amylopectin beta-limit dextrin (K m 0.45%, w/v) and glycogen beta-limit dextrin (K m 1.11%, w/v) forming maltotriose and maltose.  相似文献   

4.
Zhang SJ  Yang M  Yang QX  Zhang Y  Xin BP  Pan F 《Biotechnology letters》2003,25(17):1479-1482
Three reactive dyes were rapidly adsorbed by the mycelium pellets of Penicillium oxalicum. Dye removal of Reactive Blue 19 was up to 60% in 10 min and 91% in 80 min. Dye adsorption isotherms fitted Langmuir model well and the maximum adsorption capacities at 20 °C were calculated to be 160 mg g–1 for Reactive Blue 19, 122 mg g–1 for Reactive Red 241 and 137 mg g–1 for Reactive Yellow 145, respectively. The pellets exhibited a high dye adsorption capacity (80–180 mg g–1) for all of the 3 dyes over a wide pH range (pH 2–10), and the maximum adsorption was obtained at pH 2. The adsorption capacity was mildly increased by increasing salinity.  相似文献   

5.
Alkaline pectate lyases are favorable for the textile industry. Here we report the cloning of a pectate lyase gene (pl A), from Klebsiella sp. Y1, and its heterologous expression in Escherichia coli. The full-length pl A consists of 1710 bp and encodes for a 569-amino acid polypeptide including a putative 22-residue signal peptide and a catalytic domain belonging to pectate lyase family 2. The recombinant enzyme (r-PL A) was purified to electrophoretic homogeneity by single-step Ni2+-NTA affinity chromatography and showed an apparent molecular weight of ∼60 kDa. The pH and temperature optima of r-PL A were found to be 9.0 and 30–50 °C, respectively. r-PL A was highly active at low temperatures, exhibiting >60% of the maximal activity at 20 °C and >20% activity even at 0 °C. The enzyme was stable in a broad alkaline pH range of 7.0–12.0 for 1 h at 37 °C. The values of Km(app) and Vmax(app) of r-PL A for polygalacturonic acid were 2.47 mg/ml and 11.94 μmol/min/mg, respectively. Compared with the commercial compound pectinase from Novozymes, purified r-PL A showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (68.8% vs. 67.1%) and in bioscouring of jute (7.38% vs. 7.58%). Thus r-PL A is a valuable material for the textile industry.  相似文献   

6.
A strain of Aspergillus niger PPI having prolific xylanolytic potential was isolated and the optimum conditions for maximum xylanase production was studied, resulting in the following: 4% substrate concentration, 10% v/v inoculum size, 72 h of incubation and pH 3.5–4.5 at 28 °C. The production profile of xylanase was examined with various lignocellulosics and maximum yield was achieved with oat. The hemicellulose content of wastes was also determined and oatmeal was found to have maximum hemicellulose content followed by wheat straw, sugarcane bagasse, rice husk and gram residue respectively. The enzyme showed maximum activity at pH 4 and temperature 60 °C. However, maximum stability was achieved at pH 3.5 and temperature 55 °C. Cellulase activity was found altogether absent in the enzyme broth.  相似文献   

7.
Kluyveromyces marxianus NRRL Y-1196 yielded the highest lactase activity when cultivated in shake flasks for 24 h in sauerkraut brine with 0.2% lactose as an inducer. The enzyme was purified 4-fold and had a specific activity of 28 units/mg protein. The Km value was 3.94 mM. The pH and temperature optima of the enzyme were 7.0 and 50°C, respectively. It was stable between pH 6.0 to 7.6, but lost its activity at 60°C.  相似文献   

8.
A method of isolation and purification of lipase (EC 3.1.1.3) from the germ of wheat (Triticum aestivumL.) is described. An electrophoretically homogeneous preparation of the enzyme (specific activity, 622.5 × 10–3 mol/min per mg protein) was obtained after 61-fold purification. The molecular weight of the enzyme, determined by gel chromatography, was 143 ± 2 kDa. The optimal conditions for the enzyme were 37°C and pH 8.0. The homogeneous preparation of the lipase exhibited high thermal stability: over 20% of the original activity was retained after incubation of the preparation at high temperatures (60–90°C) for 1 h at pH 8.0.  相似文献   

9.
Summary Maximum production of alkaline serine protease by Bacillus alcalophilus subsp. halodurans KP 1239 was achieved after 24 h cultivation, at an initial pH of 7.6, on a medium containing 1.0% sodium citrate, 0.3% yeast extract, and 0.3% KH2PO4. The enzyme was purified to crystalline form from culture broth. The enzyme was most active at 60° C and at pH 11.5. The molecular weight, isoelectric point and sedimentation coefficient in water at 20° C were estimated as 29 000, 8.8 and 3.3S, respectively. The N-terminal amino acid sequence was Ala-Gln-Ser-Val-Pro-Trp-Gly-Ile-Ser-Arg-Val-Gln-Ala-Pro-Ala-Ala-His-Asn-Arg-Gly-. The enzyme shared its antigenic determinants with B. alcalophilus ATCC 21522 serine protease, but not with the subtilisins Carlsberg and BPN. Offprint requests to: Yuzuru Suzuki  相似文献   

10.
An easily scaled-up technique has been designed to purify -mannanase from Bacillus licheniformis. Using flocculation, ultrafiltration and ion-exchange chromatography, the enzyme was purified 33-fold with a final recovery of 47% and a specific activity of 4341 U mg–1protein. The enzyme had maximum activity at 60 °C and pH 7.0. It was stable at 50 °C and pH 6.0 for 6 h, but lost all of its activity when held at 70 °C and pH 6.0 for 1 h.  相似文献   

11.
Summary Chainia sp. (NCL 82.5.1) produces an extracellular, cellulase-free xylanase. The ready accessibility of the enzyme to cellulose pulp due to its small size and the absence of cellulase are advantageous features. The enzyme is stable at 40°C for 1h and in a pH range of 5–9 at 4°C. Improved stability of the enzyme at higher temperature and pH are desirable. Effect of a variety of compounds was studied to enhance stability. Glycerol, sorbitol, mannitol (10%) or glycine (1M) had marginal effect on thermostability. Addition of Ca+2 or PEG (10mM) increased the half-life of the enzyme at 60°C. Cysteine (10mM) or Tween-80 (1%) showed 70% protection against thermal inactivation. Xylan (3%) offered complete protection against inactivation of the emzyme at 60°C and at pH 9.NCL Communication No. 5907  相似文献   

12.
The hyperthermophilic archaeon Pyrococcus furiosus was grown on pyruvate as carbon and energy source. The enzymes involved in gluconeogenesis were investigated. The following findings indicate that glucose-6-phosphate formation from pyruvate involves phosphoenolpyruvate synthetase, enzymes of the Embden-Meyerhof pathway and fructose-1,6-bisphosphate phosphatase.Cell extracts of pyruvate-grown P.furiosus contained the following enzyme activities: phosphoenolpyruvate synthetase (0.025 U/mg, 50 °C), enolase (0.9 U/mg, 80 °C), phosphoglycerate mutase (0.13 U/mg, 55 °C), phosphoglycerate kinase (0.01 U/mg, 50 °C), glyceraldehyde-3-phosphate dehydrogenase reducing either NADP+ or NAD+ (NADP+: 0.019 U/mg, NAD+: 0.009 U/mg; 50 °C), triosephosphate isomerase (1.4 U/mg, 50 °C), fructose-1,6-bisphosphate aldolase (0.0045 U/mg, 55 °C), fructose-1,6-bisphosphate phosphatase (0.026 U/mg, 75 °C), and glucose-6-phosphate isomerase (0.22 U/mg, 50 °C). Kinetic properties (V max values and apparent K m values) of the enzymes indicate that they operate in the direction of sugar synthesis. The specific enzyme activities of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+-reducing) and fructose-1,6-bisphosphate phosphatase in pyruvate-grown P. furiosus were by a factor of 3, 10 and 4, respectively, higher as compared to maltose-grown cells suggesting that these enzymes are induced under conditions of gluconeogenesis. Furthermore, cell extracts contained ferredoxin: NADP+ oxidoreductase (0.023 U/mg, 60 °C); phosphoenolpyruvate carboxylase (0.018 U/mg, 50 °C) acts as an anaplerotic enzyme.Thus, in P. furiosus sugar formation from pyruvate involves reactions of the Embden-Meyerhof pathway, whereas sugar degradation to pyruvate proceeds via a modified non-phosphorylated Entner-Doudoroff pathway.  相似文献   

13.
An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60–65°C. The apparent K m with citrus pectin was 1.46 mg/ml and the V max was 2433.3 μmol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50°C for 1 h and showed a half-life of 10 min at 60°C. Polygalacturonase was stable at pH 5.0–5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn+2, Mn+2, and Hg+2, inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.  相似文献   

14.
One thermostable endoglucanase (CMCase) was purified to homogeneity from the culture supernatant of a new isolated thermophilic bacterium Caldibacillus cellulovorans. The molecular weight of the enzyme was 85.1 kDa as determined by SDS Polyacrylamide gel electrophoresis (PAGE) and 174 kDa by size-exclusion chromatography. The isoelectric point of the enzyme was at pH 4.12. The temperature for maximum activity was 80 °C, with half-lives of 32 min at 80 °C, and 2 min at 85 °C, and 83% activity remaining after 3 h at 70 °C. Thermostability of the enzyme was increased twofold by the addition of bovine serum albumin. Maximal activity was observed between pH 6.5 and 7.0. The enzyme activity was significantly inhibited by Zn2+, Hg2+, and p-chloromercuribenzenesulphonic acid. The enzyme showed high activity on carboxymethylcellulose (CMC) with much lower activity on Avicel; a low level of activity was also found against xylan. Cellobiose was the major product of hydrolysis of amorphous cellulose and CMC. Viscometric analysis indicated that the enzyme hydrolysed CMC in an exo-acting fashion. Cellotriose and cellobiose were not degraded and at least four contiguous glucosyl residues were necessary for degradation by the enzyme. The K m and V max of the enzyme for CMC were 3.4 mg ml–1 and 44.7 mol min–1 (mg protein)–1, respectively.  相似文献   

15.
Pichia anomala, isolated from dried flower buds of Woodfordia fruticosa, produced a high activity of an intracellular phytase, at 68 U per g dry biomass, when grown at 20 °C for 24 h in a medium containing glucose (40 g l–1) and beef extract (10 g l–1) supplemented with Fe2+ (0.15 mM). Partially purified phytase was optimally active at 60 °C and pH 4 with a half life of 7 days at 60 °C. It retained 85% of its activity at 80 °C for 15 min. The enzyme is suitable for supplementing animal feeds to improve the availability of phosphate from phytate.  相似文献   

16.
Summary A fungus Cladosporium cladosporioides isolated from coal sample as a decolorizing microorganism. It decolorized five different azo and triphenylmethane dyes like acid blue 193, acid black 210, crystal violet, reactive black B(S) and reactive black BL/LPR both on solid and in liquid broth medium. Culture broth of this fungus decolorized completely 100 mg of acid blue 193 l−1 in 8 days. The extracellular enzyme of Cladosporium cladosporioides decolorized acid blue 193 on repeated addition to a total (out of 700 mg l−1) concentration of 564 mg l−1 within 168 h without significant decline in the activity, showing the resistant property of Cladosporium cladosporioides to a high concentration of the dye. The optimal temperature 40 °C, pH 5.6 and sugar concentration of 4% required for decolorization of acid blue 193. Cladosporium cladosporioides showed manganese peroxidase activity with 41 U l−1, laccase activity with 1413 U l−1 and lignin peroxidase activity was negligible after day 8 of incubation.  相似文献   

17.
This study provides information on the mechanism(s) of Cu and Ni ion biosorption by C. vulgaris, distinguishing adsorption from intracellular accumulation under various conditions. Surface adsorption was found to contribute maximally (>70%) to total Cu/Ni ion accumulation by the test alga (total accumulation efficiencies were 60 and 53 g metal ion mg protein–1, respectively for Cu and Ni). Maximum intracellular uptake was reported at a pH range of 6.5–7.5, whereas adsorption reached its maximum at pH 3.5 for Cu, and pH 3.5 and 6.5 in the case of Ni. 35 °C was found to be the best temperature for maximum adsorption, whereas intracellular uptake was highest at 25 °C. Though exponentially grown C. vulgaris registered maximum metal ion uptake, adsorption maxima reached the highest values in the declining phase of the culture. Heat-killed and air-dried C. vulgaris accumulated Cu and Ni at about 80% of the values for viable samples, whereas formaldehyde-treated and immobilized biomasses depicted better accumulating potential than the control cells. Na, K, Mn and Zn caused competitive inhibition, whereas for Ca a mixed-type inhibition was evident. Thus, the present study suggests that the general concept that cations inhibit metal ion accumulation by competing with them for the same binding sites on the cell surface is not absolutely valid. As these results also demonstrate that a large amount of the bound metal (>70%) is in the adsorbed fraction, it is advantageous in the sense that it could be recovered by a suitable desorbing agent, especially in case of precious metals and the biomass could be exploited for repeated use in reactors.  相似文献   

18.
Summary A β-galactosidase from Thermotoga maritima produced galacto-oligosaccharides (GOS) from lactose by transgalactosylation when expressed in Escherichia coli. The enzyme activity for GOS production was maximal at pH 6.0 and 90 °C. In thermal stability experiments, the enzyme followed first-order kinetics of pH and thermal inactivation, and half-lives at pH 5.0, pH 8.0, 80 °C, and 95 °C were 27 h, 82 h, 41 h, and 14 min, respectively, suggesting that the enzyme was stable below 80 °C and in the pH range of 5.0–8.0. Mn2+ was the most effective divalent cation for GOS production. Cu2+ and EDTA inhibited more than 84% of enzyme activity. GOS production increased with increasing lactose concentrations and peaked at 500 g lactose/l. Among tested enzyme concentrations, the highest production of GOS was obtained at 1.5 units enzyme/ml. Under the optimal conditions of pH 6.0, 80 °C, 500 g lactose/l, and 1.5 units enzyme/ml, GOS production was 91 g/l for 300 min, with a GOS productivity of 18.2 g/l · h and a conversion yield of GOS to lactose of 18%.  相似文献   

19.
A hyper-thermostable, alkaline lipase from a newly-isolated, mesophilic Pseudomonas sp. was optimal at pH 11 and at 90 °C. It had a half-life of more than 13 h at 90 °C. It was activated by 30% when heated at 90 °C for 2 h. The enzyme had a greater affinity for mustard oil (K m=40 mg ml–1) than for olive oil (K m=140 mg ml–1).  相似文献   

20.
Summary A locally isolated strain of Aspergillus foetidus MTCC 4898 was studied for xylanase (EC 3.2.1.8) production using lignocellulosic substrates under solid state fermentation. Corncobs were found as the best substrates for high yield of xylanases with poor cellulase production. The influence of various parameters such as temperature, pH, moistening agents, moisture level, nitrogen sources and pretreatment of substrates were evaluated with respect to xylanase yield, specific activity and cellulase production. Influence of nitrogen sources on protease secretion was also examined. Maximum xylanase production (3065 U/g) was obtained on untreated corncobs moistened with modified Mandels and Strenberg medium, pH 5.0 at 1 5 moisture levels at 30 °C in 4 days of cultivation. Submerged fermentation under the same conditions gave higher yield (3300 U/g) in 5 days of cultivation, but productivity was less. Ammonium sulphate fractionation yielded 3.56-fold purified xylanase with 76% recovery. Optimum pH and temperature for xylanase activity were found to be 5.3 and 50 °C respectively. Kinetic parameters like Km and Vmax were found to be 3.58 mg/ml and 570 μmol/mg/min. Activity of the enzyme was found to be enhanced by cystiene hydrochloride, CoCl2, xylose and Tween 80, while significantly inhibited by Hg++, Cu++ and glucose. The enzyme was found to be stable at 40 °C. The half life at 50 °C was 57.53 min. However thermostability was enhanced by glycerol, trehalose and Ca++. The crude enzyme was stable during lyophilization and could be stored at less than 0 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号