首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Propionibacterium acnes is a Gram-positive, microaerophilic bacterium that causes skin wounds. It is known to naturally produce high amounts of intracellular porphyrins. The results of the present study confirm that the investigated strain of P. acnes is capable of producing endogenic porphyrins with no need for any trigger molecules. Extracts from growing cultures have demonstrated emission peaks around 612 nm when excited at 405 nm, which are characteristic for porphyrins. Endogenic porphyrins were determined and quantified after their extraction from the bacterial cells by fluorescence intensity and by elution retention time on high-performance liquid chromatography (HPLC). The porphyrins produced by P. acnes are mostly coproporphyrin, as shown by the HPLC elution patterns. Addition of delta-aminolevulinic acid (ALA) enhanced intracellular porphyrin synthesis and higher amounts of coproporphyrin have been found. Eradication of P. acnes by its endogenic porphyrins was examined after illumination with intense blue light at 407-420 nm. The viability of 24 h cultures grown anaerobically in liquid medium was reduced by less than two orders of magnitude when illuminated once with a light dose of 75 J cm(-2). Better photodynamic effects were obtained when cultures were illuminated twice or three times consecutively with a light dose of 75 J cm(-2) and an interval of 24 h between illuminations. The viability of the culture under these conditions decreased by four orders of magnitude after two illuminations and by five orders of magnitude after three illuminations. When ALA-triggered cultures were illuminated with intense blue light at a light dose of 75 J cm(-2) the viability of the treated cultures decreased by seven orders of magnitude. This decrease in viability can occur even after a single exposure of illumination for the indicated light intensity. X-ray microanalysis and transmission electron microscopy revealed structural damages to membranes in the illuminated P. acnes. Illumination of the endogenous coproporphyrin with blue light (407-420 nm) apparently plays a major role in P. acnes photoinactivation. A treatment protocol with a series of several illuminations or illumination after application of ALA may be suitable for curing acne. Treatment by both pathways may overcome the resistance of P. acnes to antibiotic treatment.  相似文献   

2.
We isolated oral bacteria that coexisted with Porphyromonas gingivalis in a hamster periodontitis model. As predominant bacteria in the periodontitis site, Collinsella-reltaed strains, Eubacterium-reltaed strains, Streptococcus suis-related strains, and Veillonella parvula-reltaed strains were detected. In addition, Actinomyces, Bacteroides, and P. gingivalis were also isolated predominantly. The results suggest that the bacterial composition of the periodontitis site in hamsters is complex, as in human periodontitis.  相似文献   

3.
The aim of this in vitro study was to evaluate the effects of nicotine, cotinine, and caffeine on the viability of some oral bacterial species. It also evaluated the ability of these bacteria to metabolize those substances. Single-species biofilms of Streptococcus gordonii, Porphyromonas gingivalis, or Fusobacterium nucleatum and dual-species biofilms of S. gordonii -- F. nucleatum and F. nucleatum -- P. gingivalis were grown on hydroxyapatite discs. Seven species were studied as planktonic cells, including Streptococcus oralis, Streptococcus mitis, Propionibacterium acnes, Actinomyces naeslundii, and the species mentioned above. The viability of planktonic cells and biofilms was analyzed by susceptibility tests and time-kill assays, respectively, against different concentrations of nicotine, cotinine, and caffeine. High-performance liquid chromatography was performed to quantify nicotine, cotinine, and caffeine concentrations in the culture media after the assays. Susceptibility tests and viability assays showed that nicotine, cotinine, and caffeine cannot reduce or stimulate bacterial growth. High-performance liquid chromatography results showed that nicotine, cotinine, and caffeine concentrations were not altered after bacteria exposure. These findings indicate that nicotine, cotinine, and caffeine, in the concentrations used, cannot affect significantly the growth of these oral bacterial strains. Moreover, these species do not seem to metabolize these substances.  相似文献   

4.
Abstract The surface hydrophobicity of 64 bacterial strains isolated from discrete, intra-oral sites of monkeys ( Macaca fascicularis ) was determined by measuring their affinity for hexadecane. Bacteria were also exposed to monkey saliva which either increased or reduced the surface hydrophobicity of the cells. After exposure to saliva those bacteria isolated solely from the mucosal surfaces were significantly more hydrophobic than bacteria ( Streptococcus mutans and Actinomyces spp.) whose major habitat was the dentition. Streptococcus sanguis strains isolated from all intra-oral sites and among the early plaque formers were as hydrophobic as the organisms isolated only from the mucosal surfaces.  相似文献   

5.
Laser-induced time-resolved autofluorescence from carious lesions of human teeth was studied by means of ultrashort pulsed laser systems, time-correlated single photon counting and time-gated imaging. Carious regions exhibited a slower fluorescence decay with a main 17 ns fluorescence lifetime than healthy hard dental tissue. The long-lived fluorophore present in carious lesions only emits in the red spectral region. Fluorescence decay time and spectral characteristics are typical of fluorescent metal-free porphyrin monomers. The spatial distribution of the long-lived endogenous porphyrin fluorophore within the tooth material was detected by time-gated nanosecond autofluorescence imaging. In particular, high contrast video images were obtained with an appropriate time delay of 15 ns to 25 ns between excitation and detection due to the suppression of short-lived autofluorescence of healthy tissue. First in vivo applications are reported indicating the potential of time-resolved fluorescence diagnostics for early caries- and dental plaque detection.  相似文献   

6.

Online water bioburden analyzers (OWBAs) can provide real-time feedback on viable bacteria in high-purity water (HPW) systems for pharmaceutical manufacturers. To calibrate and validate OWBAs, which detect bacteria using scattered light and bacterial autofluorescence, standards are needed that mimic the characteristics of bacteria in HPW. To guide selection of potential standards, e.g., fluorescent microspheres, a relevant bacterial contaminant, Ralstonia pickettii, was characterized for size, count, viability, and autofluorescence after exposure for 24 h to HPW or a nutrient environment. The cells exposed to HPW showed smaller sizes, with lower counts and autofluorescence intensities, but similar spectral features. The cell characteristics are discussed in comparison with a set of fluorescent microspheres, considering factors relevant to OWBAs. These studies suggest that fluorescent microspheres should be relatively small (< 1 µm diameter) and dim, while covering a broad emission range from ≈ (420 to 600) nm to best mimic the representative R. pickettii.

  相似文献   

7.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

8.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

9.
Adult male Syrian hamsters were exposed daily for 12 weeks to 11 h/day of cool white fluorescent light (350 +/- 50 microW/cm2) followed by an additional 3 h of near ultraviolet (339-317 nm), blue (435-500 nm), green (515-550 nm), yellow (558-636 nm) or red (653-668 nm) light at an irradiance of 0.2 microW/cm2 or to total darkness. Animals exposed to the wavelengths between 558-668 nm (yellow or red half peak bandwidths) or those receiving a total of 13 h of darkness/day had suppressed circulating levels of thyroxine (T4), a depressed free T4 index (FT4I) and a higher T3/T4 ratio compared to animals receiving a total of 14 h of white light (350 +/- 50 microW/cm2). These results suggest that specific wavelengths of light can affect the neuroendocrine-thyroid axis.  相似文献   

10.
Selective grazing by protists can profoundly influence bacterial community structure, and yet direct, quantitative observation of grazing selectivity has been difficult to achieve. In this investigation, flow cytometry was used to study grazing by the marine heterotrophic flagellate Paraphysomonas imperforata on live bacterial cells genetically modified to express the fluorescent protein markers green fluorescent protein (GFP) and red fluorescent protein (RFP). Broad-host-range plasmids were constructed that express fluorescent proteins in three bacterial prey species, Escherichia coli, Enterobacter aerogenes, and Pseudomonas putida. Micromonas pusilla, an alga with red autofluorescence, was also used as prey. Predator-prey interactions were quantified by using a FACScan flow cytometer and analyzed by using a Perl program described here. Grazing preference of P. imperforata was influenced by prey type, size, and condition. In competitive feeding trials, P. imperforata consumed algal prey at significantly lower rates than FP (fluorescent protein)-labeled bacteria of similar or different size. Within-species size selection was also observed, but only for P. putida, the largest prey species examined; smaller cells of P. putida were grazed preferentially. No significant difference in clearance rate was observed between GFP- and RFP-labeled strains of the same prey species or between wild-type and GFP-labeled strains. In contrast, the common chemical staining method, 5-(4,6-dichloro-triazin-2-yl)-amino fluorescein hydrochloride, depressed clearance rates for bacterial prey compared to unlabeled or RFP-labeled cells.  相似文献   

11.
Quantitative light‐induced fluorescence (QLF) technology can detect some dental plaque as red fluorescence. This in vivo study aimed to identify the microbial characteristics of red fluorescent (RF) dental plaque using 16S rRNA gene sequencing and evaluate the correlations between RF plaque and the clinical symptoms of dental diseases. Paired supragingival plaque samples collected from each 10 subjects and consisted of RF and non‐RF dental plaques as observed by QLF technology using a 405 nm blue light source for excitation. The characteristics of the bacterial communities in the RF and non‐RF plaque samples were compared by sequencing analysis. An increase in microbial diversity was observed in RF plaque compared with the non‐RF plaque. There were significant differences in the community compositions between the 2 types of dental plaque. Periodontopathic bacteria were significantly more abundant in the RF plaque than non‐RF plaque. The fluorescence intensity of RF plaque was significantly related to the proportion of the periodontopathic bacterial community and the presence of gingival inflammation. In conclusion, the plaque red fluorescence is associated with changes in the microbial composition and enrichment of periodontopathic pathogens, which suggests that RF plaque detected by QLF technology could be used as a risk indicator for gingival inflammation.   相似文献   

12.
Topical PDT treatment of the common skin disease acne vulgaris is now in clinical use. Propionibacterium acnes (P. acnes) is known to play an important role in acne. 5-Aminolevulinic acid (ALA) supplementation leads to an enhanced porphyrin production in the bacteria. Subsequent illumination with light of the proper wavelengths can reduce the number of bacteria and this might at least partly explain the PDT effect on acne. We have assessed the effects of temperature on P. acnes washed cell suspensions incubated for 4 h with ALA or ALA methyl ester (m-ALA). The effect on porphyrin production of both the cell suspension incubation temperature as well as the initial growth temperature of the cultivated cells prior to harvesting and use in suspension experiments was investigated. The bacterial porphyrin content was estimated from fluorescence emission spectra. It was found that incubation with ALA or m-ALA at a temperature 42 degrees C resulted in an approx. 100% and 33% increase in the total amount of PDT-relevant porphyrins produced as compared to incubation at 37 degrees C. These results support increasing the skin temperature during incubation with ALA or m-ALA in the clinic. The initial growth temperature, prior to the incubation, had no apparent effect on the ALA or m-ALA induced porphyrins. Activation energy studies indicate slightly higher temperature dependence in the case of ALA produced porphyrins as compared to m-ALA produced porphyrins (77 and 65 kJ mol(-1), respectively).  相似文献   

13.
Interbacterial adhesion (coadhesion) is considered a major determinant of dental plaque ecology. In this report, we studied several aspects of the adhesion of Porphyromonas (Bacteroides) gingivalis to hexadecane in order to use the liquid hydrocarbon as a convenient substratum for coadhesion assays. Washed suspensions of hydrophobic P. gingivalis 2561 cells were vortexed with hexadecane to yield highly stable cell-coated droplets. Kinetics of coadhesion between Actinomyces viscosus cells and P. gingivalis-coated hexadecane droplets (PCHD) was subsequently studied. Aliquots of PCHD were added to A. viscosus suspensions, and the mixtures were gently rotated. Avid adhesion of A. viscosus cells to the immobilized P. gingivalis layer could be readily measured by the decrease in turbidity in the aqueous phase, following phase separation. Despite the ability of A. viscosus cells to adsorb to hexadecane following vigorous mixing, gentle mixing did not appreciably promote adhesion to bare hexadecane. Moreover, extensive microscopic examinations revealed that A. viscosus cells adhered exclusively to the bound P. gingivalis cells rather than to exposed areas of hexadecane. Coadhesion of A. viscosus to the PCHD appeared to follow first-order kinetics, attaining 80% levels within 30 min. Electron micrographs revealed A. viscosus cells adhering to the P. gingivalis cell layer adsorbed at the hexadecane-water interface. Interestingly, P. gingivalis cells did not appear to penetrate the hexadecane. A viscosus mutants lacking type 1 or type 2 fimbriae or both were still able to bind to the PCHD. No obvious correlation was observed between relative hydrophobicity of A. viscosus strains and their binding to PCHD. However, defatted bovine serum albumin, an inhibitor of hydrophobic interactions, was the most potent inhibitor among those tested. The data suggest that this approach provides a simple, quantitative technique for studying kinetics of bacterial coadhesion which is amenable to both light and electron microscopic observation.  相似文献   

14.
In the oral cavity, Actinomyces form a fundamental component of the indigenous microflora, being among initial colonizers in polymicrobial biofilms. However, some differences may exist between different species in terms of their attachment not only to teeth but also to biomaterials. In this study we investigated the distribution of Actinomyces in 33 dental implant fixtures explanted from 17 patients. The identification was based on comprehensive biochemical testing and gas-liquid chromatography and when needed, 16S rRNA sequencing. Actinomyces was the most prevalent bacterial genus in these failed implants, colonizing 31/33 (94%) of the fixtures. Proportions of Actinomyces growth of the total bacterial growth in the Actinomyces-positive fixtures varied from 0.01% up to 75%. A. odontolyticus was the most common Actinomyces finding, present in 26/31 (84%) Actinomyces-positive fixtures. Actinomyces naeslundii and A. viscosus were both detected in 10/31 (32%) and A. israelii in 7/31 (23%) fixtures. Other Actinomyces species, including A. georgiae, A. gerencseriae and A. graevenitzii, were detected less frequently. Our results suggest that Actinomyces species are frequent colonizers on failed implant surfaces, where A. odontolyticus was the far most prominent Actinomyces species.  相似文献   

15.
Selective grazing by protists can profoundly influence bacterial community structure, and yet direct, quantitative observation of grazing selectivity has been difficult to achieve. In this investigation, flow cytometry was used to study grazing by the marine heterotrophic flagellate Paraphysomonas imperforata on live bacterial cells genetically modified to express the fluorescent protein markers green fluorescent protein (GFP) and red fluorescent protein (RFP). Broad-host-range plasmids were constructed that express fluorescent proteins in three bacterial prey species, Escherichia coli, Enterobacter aerogenes, and Pseudomonas putida. Micromonas pusilla, an alga with red autofluorescence, was also used as prey. Predator-prey interactions were quantified by using a FACScan flow cytometer and analyzed by using a Perl program described here. Grazing preference of P. imperforata was influenced by prey type, size, and condition. In competitive feeding trials, P. imperforata consumed algal prey at significantly lower rates than FP (fluorescent protein)-labeled bacteria of similar or different size. Within-species size selection was also observed, but only for P. putida, the largest prey species examined; smaller cells of P. putida were grazed preferentially. No significant difference in clearance rate was observed between GFP- and RFP-labeled strains of the same prey species or between wild-type and GFP-labeled strains. In contrast, the common chemical staining method, 5-(4,6-dichloro-triazin-2-yl)-amino fluorescein hydrochloride, depressed clearance rates for bacterial prey compared to unlabeled or RFP-labeled cells.  相似文献   

16.
The respiratory quinones of 73 strains of Gram-positive bacteria including spore-forming rods, lactic-acid bacteria and actinomyctes were examined. Menaquinones with seven isoprenoid units (MK-7) were the main quinone type found in representatives of the genus Bacillus and in Sporolactobacillus inulinus. However, a strain of B. thuringiensis produced MK-8 in addition to MK-7, and strains of B. lentus and B. pantothenticus appeared to produce MK-9 and MK-8, respectively, with no MK-7. In the clostridia and lactic-acid bacteria, no quinones were found, except in Pediococcus cerevisiae NCTC 8066 and Lactobacillus casei subsp. rhamnosus ATCC 7469, which contained menaquinones, and Streptococcus faecalis NCTC 775 and HIM 478-1, which contained demethylmenaquinones, in relatively low concentrations. Menaquinones were also found in the actinomycetes (except Actinomyces odontolyticus and Bifidobacterium bifidum which did not produce any quinones) and in Protaminobacter alboflavus ATCC 8458, the so-called Actinobacillus actinoides ATCC 15900 and Noguchia granulosis NCTC 10559.  相似文献   

17.
Flow cytometry has provided a powerful tool for analyzing bacteria-host cell associations. Established approaches have used bacteria, labeled either directly with fluorochromes or indirectly with fluorescently conjugated antibodies, to detect these associations. Although useful, these techniques are consistently unable to include all host cells in the analysis while excluding free, aggregated bacteria. This study describes a new flow cytometry method of assessing bacterial adherence to host cells based on direct fluorescent labeling of both bacteria and host cells. Eukaryotic host cells were labeled with PKH-26, a red fluorescent dye, and bacteria were labeled with fluorescein isothiocyanate, a green fluorescent dye. The red host cells were gated and the mean green fluorescence intensity (MFI) of these red cells was determined. We used MFI values obtained from control samples (unlabeled and labeled host cells with unlabeled bacteria) to eliminate contributions due to autofluorescence. The final MFI values represent fluorescence of host cells resulting from the adherent bacteria. Because all red fluorescent cells are analyzed, this method includes all the eukaryotic cells for analysis but excludes all free or aggregated bacteria that are not bound to target cells.  相似文献   

18.
This study focuses on the characterization of bacterial and yeast species through their autofluorescence spectra. Lactic acid bacteria (Lactobacillus sp.), and yeast (Saccharomyces sp.) were cultured under controlled conditions and studied for variations in their autofluorescence, particularly in the area representative of tryptophan residues of proteins. The emission and excitation spectra clearly reveal that bacterial and yeast species can be differentiated by their intrinsic fluorescence with UV excitation. The possibility of differentiation between different strains of Saccharomyces yeast was also studied, with clear differences observed for selected strains. The study shows that fluorescence can be successfully used to differentiate between yeast and bacteria and between different yeast species, through the identification of spectroscopic fingerprints, without the need for fluorescent staining.  相似文献   

19.
Photodynamic therapy (PDT), used for cancer treatment, is also an alternative method for eradication of drug-resistant bacteria. This method utilizes a nontoxic light-activated dye, called a photosensitizer, and visible light to produce reactive oxygen species that lead to bacterial cell death. The purpose of this study was to investigate the bactericidal effect of PDT using lanthanide derivatives of meso-tetra(N-methyl-4-pyridyl)porphine against Staphylococcus aureus strains. The new photosensitizers appeared to be photodynamically ineffective. No enhancement of antistaphylococcal activity of TMPyP was observed after the conjugation of the porphyrin with lanthanide ions. Additionally, a significant difference in the susceptibility of two bacterial strains to unmodified TMPyP was observed.  相似文献   

20.
Forty-six adult periodontal patients, selected on the basis of clinical examination, and 46 adult healthy subjects were examined. The subgingival plaque samples from one inflammatory and one non-inflammatory site of each periodontal patient were studied to determine Porphyromonas gingivalis prevalence related to other periodontal micro-organisms and to periodontal tissue destruction. The results showed Porphyromonas gingivalis as the main pathogenic micro-organism isolated in the inflammatory sites together with Bacteroides forsythus. Peptostreptococcus sp., Actinomyces sp. and Prevotella sp. were found as a normal oral flora in the healthy subjects. Fusobacterium nucleatum, Prevotella intermedia, Campylobacter rectus and Eikenella corrodens were detected both in inflammatory and in non-inflammatory sites of periodontal patients as well as in the healthy subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号