首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations to the signal transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on statistical attributes of the stimuli, such as sound intensity, is usually explained by nonlinear mechanisms and models. Here, we apply an efficient coding principle which has been successfully used to understand receptive fields in early stages of visual processing, in order to provide a computational understanding of the STRFs. According to this principle, STRFs result from an optimal tradeoff between maximizing the sensory information the brain receives, and minimizing the cost of the neural activities required to represent and transmit this information. Both terms depend on the statistical properties of the sensory inputs and the noise that corrupts them. The STRFs should therefore depend on the input power spectrum and the signal-to-noise ratio, which is assumed to increase with input intensity. We analytically derive the optimal STRFs when signal and noise are approximated as Gaussians. Under the constraint that they should be spectro-temporally local, the STRFs are predicted to adapt from being band-pass to low-pass filters as the input intensity reduces, or the input correlation becomes longer range in sound frequency or time. These predictions qualitatively match physiological observations. Our prediction as to how the STRFs should be determined by the input power spectrum could readily be tested, since this spectrum depends on the stimulus ensemble. The potentials and limitations of the efficient coding principle are discussed.  相似文献   

2.
We present LAFTER, an algorithm for de-noising single particle reconstructions from cryo-EM.Single particle analysis entails the reconstruction of high-resolution volumes from tens of thousands of particle images with low individual signal-to-noise. Imperfections in this process result in substantial variations in the local signal-to-noise ratio within the resulting reconstruction, complicating the interpretation of molecular structure. An effective local de-noising filter could therefore improve interpretability and maximise the amount of useful information obtained from cryo-EM maps.LAFTER is a local de-noising algorithm based on a pair of serial real-space filters. It compares independent half-set reconstructions to identify and retain shared features that have power greater than the noise. It is capable of recovering features across a wide range of signal-to-noise ratios, and we demonstrate recovery of the strongest features at Fourier shell correlation (FSC) values as low as 0.144 over a 2563-voxel cube. A fast and computationally efficient implementation of LAFTER is freely available.We also propose a new way to evaluate the effectiveness of real-space filters for noise suppression, based on the correspondence between two FSC curves: 1) the FSC between the filtered and unfiltered volumes, and 2) Cref, the FSC between the unfiltered volume and a hypothetical noiseless volume, which can readily be estimated from the FSC between two half-set reconstructions.  相似文献   

3.
We describe psychophysical evidence that the human visual system contains information-processing channels for motion in depth in addition to those for position in depth. These motion-in-depth channels include some that are selectively sensitive to the relative velocities of the left and right retinal images. We propose that the visual pathway contains stereoscopic (cyclopean) motion filters that respond to only a narrow range of the directions of motion in depth. Turning to the single-neuron level we report that, in addition to neurons turned to position to depth, cat visual cortex contains neurons that emphasize information about the direction of motion at the expense of positional information. We describe psychophysical evidence for the existence of channels that are sensitive to change size, and are separate from the channels both for motion and for flicker. These changing-size channels respond independently of whether the stimulus is a bright square on a dark ground or a dark square on a bright ground. At the physiological level we report single neurons in cat visual cortex that respond selectively to increasing or to decreasing size independently of the sign of stimulus contrast. Adaptation to a changing-size stimulus produces two separable after-effects: an illusion of changing size, and an illusion of motion in depth. These after-effects have different decay time constants. We propose a psychophysical model in which changing-size filters feed a motion-in-depth stage, and suppose that the motion-in-depth after-effect is due to activity at the motion-in-depth stage, while the changing-size after-effect is due to to activity at the changing-size and more peripheral stages. The motion-in-depth after-effect can be cancelled either by a changing-size test stimulus or by relative motion of the left and right retinal images. Opposition of these two cues can also cancel the impression of motion in depth produced by the adapting stimulus. These findings link the stereoscopic (cyclopean) motion filters and the changing-size filters: both feed the same motion-in-depth stage.  相似文献   

4.
In sensory biology, a major outstanding question is how sensory receptor cells minimize noise while maximizing signal to set the detection threshold. This optimization could be problematic because the origin of both the signals and the limiting noise in most sensory systems is believed to lie in stimulus transduction. Signal processing in receptor cells can improve the signal-to-noise ratio. However, neural circuits can further optimize the detection threshold by pooling signals from sensory receptor cells and processing them using a combination of linear and nonlinear filtering mechanisms. In the visual system, noise limiting light detection has been assumed to arise from stimulus transduction in rod photoreceptors. In this context, the evolutionary optimization of the signal-to-noise ratio in the retina has proven critical in allowing visual sensitivity to approach the limits set by the quantal nature of light. Here, we discuss how noise in the mammalian retina is mitigated to allow for highly sensitive night vision.  相似文献   

5.
1.  A theory is presented that utilizes the structure of natural images, and how they change in time, to produce spatiotemporal filters that maximize information flow through a noisy channel of limited dynamic range. For low signal-to-noise ratios (SNRs) the filter has low-pass, and for high SNRs band-pass characteristics, both in space and time.
2.  Theoretical impulse responses are compared to measurements in Large Monopolar Cells (LMCs) in the fly (Calliphora vicina) brain. Two different spatial stimuli (point source and wide field) were given at background intensities over a 5.5 log unit wide range. Theory and experiment correspond well, and they share the following properties: impulse responses get much faster and more biphasic with increasing background intensity (SNR); they show larger off-transients for wide field stimuli than for point sources; the half-width of the spatial receptive field changes only slightly with increased intensity, and lateral inhibition increases; contrast efficiency increases with intensity.
  相似文献   

6.
Investigators have repeatedly pointed out the importance of spectral information in the automated classification of white blood cells. In general, monochromatic images recorded through two or three color filters are used to extract this information. Although it has generally been thought that the use of narrow band filters provides "cleaner" color information than is obtainable through wide band filters, the choice has not been fully investigated and the question is far from being settled. The use of wide band filters has the clear practical advantage of increased light levels at the detector, resulting in higher signal-to-noise ratio with less demand on light source design. In order to investigate this issue, a series of 681 leukocytes of the most frequently occurring types were digitized by the use of both narrow (10 nm) and wide (90 nm) band filters. Parameters were extracted independently from both sets of images. These parameters were then used to develop a classifier for each set of images. The choice of features and classifier results indicate that there are no major performance differences between the two types of filters.  相似文献   

7.
It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study spatial acuity and small signal extraction. We show that the quality of sensory information available on the lateral body surface is highest for objects close to the fish's midbody, suggesting that spatial acuity should be highest at this location. Overall, however, this information is relatively blurry and the electrosense exhibits relatively poor acuity. Despite this apparent limitation, weakly electric fish are able to extract the minute signals generated by small prey, even in the presence of large background signals. In fact, we show that the fish's poor spatial acuity may actually enhance prey detection under some conditions. This occurs because the electric image produced by a spatially dense background is relatively “blurred” or spatially uniform. Hence, the small spatially localized prey signal “pops out” when fish motion is simulated. This shows explicitly how the back-and-forth swimming, characteristic of these fish, can be used to generate motion cues that, as in other animals, assist in the extraction of sensory information when signal-to-noise ratios are low. Our study also reveals the importance of the structure of complex electrosensory backgrounds. Whereas large-object spacing is favorable for discriminating the individual elements of a scene, small spacing can increase the fish's ability to resolve a single target object against this background.  相似文献   

8.
9.
Cyclic nucleotide-gated (CNG) ion channels are central participants in sensory transduction, generating the electrical response to light in retinal photoreceptors and to odorants in olfactory receptors. They are expressed in many other tissues where their specific roles in signaling remain unclear. As is true for many other ion channels, there is a paucity of specific blockers needed to dissect the contributions of these channels to cell signaling. CNG channels are members of the superfamily of voltage-gated ion channels, and the local anesthetic tetracaine is known to block CNG channels in a manner that resembles the block of voltage-gated Na(+) channels. The amine in local anesthetics interacts with the charged selectivity filter of Na(+) channels, while the aromatic ring gets stuck in the inner cavity and has hydrophobic interactions with the residues lining that region. Here we have synthesized a derivative of tetracaine, 3-[(aminopropyl)amino]-N,N-dimethyl-N-(2-[[4-(butylamino)benzoyl]oxy]ethyl)propan-1-aminium acetate (APPA-tetracaine), that contains three positively charged amines at physiological pH instead of one. This compound blocked several different CNG channels in the picomolar to nanomolar concentration range at positive membrane potentials, making it several orders of magnitude more potent than tetracaine. In contrast, significant block of Na(+) channels by APPA-tetracaine required concentrations of hundreds of nanomolar. The results suggest that the highly charged moiety of APPA-tetracaine interacts strongly with the negative charge cluster in the selectivity filter of CNG channels. We propose that a variety of potent and specific ion channel blockers could be generated by expanding on traditional blocker structures to target the selectivity filters of other channels.  相似文献   

10.
《Biophysical journal》2022,121(23):4740-4747
Touch allows us to gather abundant information in the world around us. However, how sensory cells embedded in the fingers convey texture information into their firing patterns is still poorly understood. Here, we develop an electromechanical model for roughness perception by incorporating main ingredients such as voltage-gated ion channels, active ion pumps, mechanosensitive channels, and cell deformation. The model reveals that sensory cells can convey texture wavelengths into the period of their firing patterns as the finger slides across object surfaces, but they can only convey a limited range of texture wavelengths. We also show that an increase in sliding speed broadens the decoding wavelength range at the cost of reduction of lower perception limits. Thus, a smaller sliding speed and a bigger contact force may be needed to successfully discern a smooth surface, consistent with previous psychophysical observations. Moreover, we show that cells with slowly adapting mechanosensitive channels can still fire action potentials under static loadings, indicating that slowly adapting mechanosensitive channels may contribute to the perception of coarse textures under static touch. Our work thus provides a new theoretical framework to study roughness perception and may have important implications for the design of electronic skin, artificial touch, and haptic interfaces.  相似文献   

11.
The electrosensory and mechanosensory lateral line systems of fish exhibit many common features in their structural and functional organization, both at the sensory periphery as well as in central processing pathways. These two sensory systems also appear to play similar roles in many behavioral tasks such as prey capture, orientation with respect to external environmental cues, navigation in low-light conditions, and mediation of interactions with nearby animals. In this paper, we briefly review key morphological, physiological, and behavioral aspects of these two closely related sensory systems. We present arguments that the information processing demands associated with spatial processing are likely to be quite similar, due largely to the spatial organization of both systems and the predominantly dipolar nature of many electrosensory and mechanosensory stimulus fields. Demands associated with temporal processing may be quite different, however, due primarily to differences in the physical bases of electrosensory and mechanosensory stimuli (e.g. speed of transmission). With a better sense of the information processing requirements, we turn our attention to an analysis of the functional organization of the associated first-order sensory nuclei in the hindbrain, including the medial octavolateral nucleus (MON), dorsal octavolateral nucleus (DON), and electrosensory lateral line lobe (ELL). One common feature of these systems is a set of neural mechanisms for improving signal-to-noise ratios, including mechanisms for adaptive suppression of reafferent signals. This comparative analysis provides new insights into how the nervous system extracts biologically significant information from dipolar stimulus fields in order to solve a variety of behaviorally relevant problems faced by aquatic animals.  相似文献   

12.
13.
14.
Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.  相似文献   

15.
Thermal motions of microscopic probes limit the possibilities of experiments that are designed to resolve single-macromolecule dynamics in aqueous conditions. We investigate theoretical strategies for maximizing signal-to-noise ratios or resolution in typical situations, illustratin+g our discussion with examples from optical tweezers and atomic force microscopy experiments. A central result is that the viscous drag on a micromechanical probe is more important than the compliance of the probe. Within limits, increased stiffness of an AFM cantilever or of an optical trap does not increase resolution, and decreased stiffness does not provide the possibility of less invasive measurements. Received: 15 August 1997 / Accepted: 11 September 1997  相似文献   

16.
The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems.  相似文献   

17.
High-gain, low-noise amplification in olfactory transduction.   总被引:4,自引:0,他引:4       下载免费PDF全文
It is desirable that sensory systems use high-gain, low-noise amplification to convert weak stimuli into detectable signals. Here it is shown that a pair of receptor currents underlying vertebrate olfactory transduction constitutes such a scheme. The primary receptor current is an influx of Na+ and Ca2+ through cAMP-gated channels in the olfactory cilia. External divalent cations improve the signal-to-noise properties of this current, reducing the mean current and the current variance. As Ca2+ enters the cilium, it gates Cl- channels, activating a secondary depolarizing receptor current. This current amplifies the primary current, but introduces little additional noise. The system of two currents plus divalent cations in the mucus produces a large receptor current with very low noise.  相似文献   

18.
The lateral line is a hydrodynamic sensory system that allows fishes and aquatic amphibians to detect the water motions caused, for instance, by conspecifics, predators or prey. Typically the peripheral lateral line of fishes consists of several hundred neuromasts spread over the head, trunk, and tail fin. Lateral line neuromasts are mechanical low-pass filters that have an operating range from <1 Hz up to about 150 Hz. Within this frequency range, neuromasts encode the duration, local direction, amplitude, frequency, and phase of a hydrodynamic stimulus. This paper reviews the peripheral and central processing of lateral line information in fishes. Special attention is given to the coding of simple and complex hydrodynamic stimuli, to parallel processing, the roles of the various brain areas that process hydrodynamic information and the centrifugal (efferent) control of lateral line information. The review argues that in order to fully comprehend peripheral and central lateral line information processing, it is imperative to do comparative studies that take into account the ecology of fishes, meaning that natural stimulus and noise conditions have to be considered.  相似文献   

19.
If the ion concentration is low enough that most channels are unoccupied, then the ‘independence relations’ should be satisfied and the permeability ratio should equal the conductance ratio. It has been previously reported that for the gramicidin A channel these ratios for Na+ and K+ were not equal at concentrations as low as 10 mM. However, these ratios were not measured at the same applied potential, as is required by the theory. Instead, the conductance ratio was measured at 100 mV and corrected using calculated current-voltage relations. In this report the comparison between permeability and conductance ratios is reexamined using data obtained at the correct potential. There is no significant difference in the ratios at 10 mM when they are measured at the same voltage. This implies that most channels are not occupied by sodium or potassium ions at 10 mM.  相似文献   

20.
Receiver sensory abilities can be influenced by a number of factors, including habitat, phylogeny and the selective pressure to acquire information about conspecifics or heterospecifics. It has been hypothesized that brood-parasitic brown-headed cowbird (Molothrus ater) females may locate or determine the quality of potential hosts by eavesdropping on their sexual signals. This is expected to produce different sex-specific pressures on the auditory system to detect conspecific and heterospecific acoustic signals. Here, we examined auditory filter shape and efficiency, which influence the ability to resolve spectral and temporal information, in males and females at center frequencies of 2, 3 and 4 kHz. We found that overall, cowbirds had relatively wide filters (lsmean ± SE: 619.8 ± 41.6 Hz). Moreover, females had narrower filters (females: 491.4 ± 66.8, males: 713.8 ± 67.3 Hz) and greater filter efficiency (females: 59.0 ± 2.0, males: 69.8 ± 1.9 dB) than males. Our results suggest that the filters of female cowbirds may allow them to extract spectral information from heterospecific vocalizations. The broader auditory filters of males may reflect limited spectral energy in conspecific vocalizations in this frequency range, and hence, weaker selection for high resolution of frequency in the range of 2–4 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号