首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Replication protein A (RPA) is a heterotrimeric, multi-functional protein that binds single-stranded DNA (ssDNA) and is essential for eukaryotic DNA metabolism. Using heteronuclear NMR methods we have investigated the domain interactions and ssDNA binding of a fragment from the 70 kDa subunit of human RPA (hRPA70). This fragment contains an N-terminal domain (NTD), which is important for hRPA70–protein interactions, connected to a ssDNA-binding domain (SSB1) by a flexible linker (hRPA701–326). Correlation analysis of the amide 1H and 15N chemical shifts was used to compare the structure of the NTD and SSB1 in hRPA701–326 with two smaller fragments that corresponded to the individual domains. High correlation coefficients verified that the NTD and SSB1 maintained their structures in hRPA701–326, indicating weak interdomain coupling. Weak interdomain coupling was also suggested by a comparison of the transverse relaxation rates for hRPA701–326 and one of the smaller hRPA70 fragments containing the NTD and the flexible linker (hRPA701–168). We also examined the structure of hRPA701–326 after addition of three different ssDNA substrates. Each of these substrates induced specific amide 1H and/or 15N chemical shift changes in both the NTD and SSB1. The NTD and SSB1 have similar topologies, leading to the possibility that ssDNA binding induced the chemical shift changes observed for the NTD. To test this hypothesis we monitored the amide 1H and 15N chemical shift changes of hRPA701–168 after addition of ssDNA. The same amide 1H and 15N chemical shift changes were observed for the NTD in hRPA701–168 and hRPA701–326. The NTD residues with the largest amide 1H and/or 15N chemical shift changes were localized to a basic cleft that is important for hRPA70–protein interactions. Based on this relationship, and other available data, we propose a model where binding between the NTD and ssDNA interferes with hRPA70–protein interactions.  相似文献   

2.
The interaction between the acidic transactivation domain of the human tumor suppressor protein p53 (p53TAD) and the 70 kDa subunit of human replication protein A (hRPA70) was investigated using heteronuclear magnetic resonance spectroscopy. A 1H–15N heteronuclear single quantum coherence (HSQC) titration experiment was performed on a 15N-labeled fragment of hRPA70, containing the N-terminal 168 residues (hRPA701–168) and p53TAD. HRPA701–168 residues important for binding were identified and found to be localized to a prominent basic cleft. This binding site overlapped with a previously identified single-stranded DNA-binding site, suggesting that a competitive binding mechanism may regulate the formation of p53TAD–hRPA70 complex. The amide 1H and 15N chemical shifts of an uniformly 15N-labeled sample of p53TAD were also monitored before and after the addition of unlabeled hRPA701–168. In the presence of unlabeled hRPA701–168, resonance lineshapes increased and corresponding intensity reductions were observed for specific p53TAD residues. The largest intensity reductions were observed for p53TAD residues 42–56. Minimal binding was observed between p53TAD and a mutant form of hRPA701–168, where the basic cleft residue R41 was changed to a glutamic acid (R41E), demonstrating that ionic interactions play an important role in specifying the binding interface. The region of p53TAD most affected by binding hRPA701–168 was found to have some residual alpha helical and beta strand structure; however, this structure was not stabilized by binding hRPA701–168. 15N relaxation experiments were performed to monitor changes in backbone dynamics of p53TAD when bound to hRPA701–168. Large changes in both the transverse (R2) and rotating frame (R) relaxation rates were observed for a subset of the p53TAD residues that had 1H–15N HSQC resonance intensity reductions during the complex formation. The folding of p53TAD upon complex formation is suggested by the pattern of changes observed for both R2 and R. A model that couples the formation of a weak encounter complex between p53TAD and hRPA701–168 to the folding of p53TAD is discussed in the context of a functional role for the p53–hRPA70 complex in DNA repair.  相似文献   

3.
Park CJ  Lee JH  Choi BS 《Nucleic acids research》2005,33(13):4172-4181
Replication protein A (RPA) is a three-subunit complex with multiple roles in DNA metabolism. DNA-binding domain A in the large subunit of human RPA (hRPA70A) binds to single-stranded DNA (ssDNA) and is responsible for the species-specific RPA–T antigen (T-ag) interaction required for Simian virus 40 replication. Although Saccharomyces cerevisiae RPA70A (scRPA70A) shares high sequence homology with hRPA70A, the two are not functionally equivalent. To elucidate the similarities and differences between these two homologous proteins, we determined the solution structure of scRPA70A, which closely resembled the structure of hRPA70A. The structure of ssDNA-bound scRPA70A, as simulated by residual dipolar coupling-based homology modeling, suggested that the positioning of the ssDNA is the same for scRPA70A and hRPA70A, although the conformational changes that occur in the two proteins upon ssDNA binding are not identical. NMR titrations of hRPA70A with T-ag showed that the T-ag binding surface is separate from the ssDNA-binding region and is more neutral than the corresponding part of scRPA70A. These differences might account for the species-specific nature of the hRPA70A–T-ag interaction. Our results provide insight into how these two homologous RPA proteins can exhibit functional differences, but still both retain their ability to bind ssDNA.  相似文献   

4.
Recent NMR-based, chemical shift mapping experiments with the minimal DNA-binding domain of XPA (XPA-MBD: M98–F219) suggest that a basic cleft located in the loop-rich subdomain plays a role in DNA-binding. Here, XPA–DNA interactions are further characterized by NMR spectroscopy from the vantage point of the DNA using a single-stranded DNA nonamer, dCCAATAACC (d9). Up to 2.5 molar equivalents of XPA-MBD was titrated into a solution of d9. A subset of 31P resonances of d9 were observed to broaden and/or shift providing direct evidence that XPA-MBD binds d9 by a mechanism that perturbs the phosphodiester backbone of d9. The interior five residues of d9 broadened and/or shifted before 31P resonances of phosphate groups at the termini, suggesting that when d9 is bound to XPA-MBD the internal residues assume a correlation time that is characteristic of the molecular weight of the complex while the residues at the termini undergo a fraying motion away from the surface of the protein on a timescale such that the line widths are more characteristic of the molecular weight of ssDNA. A molecular model of the XPA-MBD complex with d9 was calculated based on the 15N (XPA-MBD) and 31P (d9) chemical shift mapping studies and on the assumption that electrostatic interactions drive the complex formation. The model shows that a nine residue DNA oligomer fully covers the DNA-binding surface of XPA and that there may be an energetic advantage to binding DNA in the 3′→5′ direction rather than in the 5′→3′ direction (relative to XPA-MBD α-helix-3).  相似文献   

5.
Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA–hRPA complexes. Human Rad52 bound ssDNA or ssDNA–hRPA complex in two, concentration-dependent modes. At low hRad52 concentrations, ssDNA was wrapped around the circumference of the protein ring, while at higher protein concentrations, ssDNA was stretched between multiple hRad52 rings. Annealing by hRad52 occurred most efficiently when each complementary DNA strand or each ssDNA–hRPA complex was bound by hRad52 in a wrapped configuration, suggesting homology search and annealing occur via two hRad52–ssDNA complexes. In contrast to the wild type protein, hRad52RQK/AAA and hRad521–212 mutants with impaired ability to bind hRPA protein competed with hRPA for binding to ssDNA and failed to counteract hRPA-mediated duplex destabilization highlighting the importance of hRad52-hRPA interactions in promoting efficient DNA annealing.  相似文献   

6.
Replication protein A (RPA) is a eukaryotic single-stranded DNA (ssDNA) binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during these processes. To probe the dynamics of RPA–DNA interactions, we combined ensemble and single-molecule fluorescence approaches to examine human RPA (hRPA) diffusion along ssDNA and find that an hRPA heterotrimer can diffuse rapidly along ssDNA. Diffusion of hRPA is functional in that it provides the mechanism by which hRPA can transiently disrupt DNA hairpins by diffusing in from ssDNA regions adjacent to the DNA hairpin. hRPA diffusion was also monitored by the fluctuations in fluorescence intensity of a Cy3 fluorophore attached to the end of ssDNA. Using a novel method to calibrate the Cy3 fluorescence intensity as a function of hRPA position on the ssDNA, we estimate a one-dimensional diffusion coefficient of hRPA on ssDNA of D1 ~ 5000 nt2 s− 1 at 37 °C. Diffusion of hRPA while bound to ssDNA enables it to be readily repositioned to allow other proteins access to ssDNA.  相似文献   

7.
Human XPA is an essential component in the multienzyme nucleotide excision repair (NER) pathway. The solution structure of the minimal DNA binding domain of XPA (XPA-MBD: M98-F219) was recently determined [Buchko et al. (1998) Nucleic Acids Res. 26, 2779-2788, Ikegami et al. (1998) Nat. Struct. Biol. 5, 701-706] and shown to consist of a compact zinc-binding core and a loop-rich C-terminal subdomain connected by a linker sequence. Here, the solution structure of XPA-MBD was further refined using an entirely new class of restraints based on pseudocontact shifts measured in cobalt-substituted XPA-MBD. Using this structure, the surface of XPA-MBD which interacts with DNA and a fragment of the largest subunit of replication protein A (RPA70 Delta C327: M1-Y326) was determined using chemical shift mapping. DNA binding in XPA-MBD was highly localized in the loop-rich subdomain for DNA with or without a lesion [dihydrothymidine (dhT) or 6-4-thymidine-cytidine (64TC)], or with DNA in single- or double-stranded form, indicating that the character of the lesion itself is not the driving force for XPA binding DNA. RPA70 Delta C327 was found to contact regions in both the zinc-binding and loop-rich subdomains. Some overlap of the DNA and RPA70 Delta C327 binding regions was observed in the loop-rich subdomain, indicating a possible cooperative DNA-binding mode between XPA and RPA70 Delta C327. To complement the chemical shift mapping data, the backbone dynamics of free XPA-MBD and XPA-MBD bound to DNA oligomers containing dhT or 64TC lesions were investigated using 15N NMR relaxation data. The dynamic analyses for the XPA-MBD complexes with DNA revealed localized increases and decreases in S2 and an increase in the global correlation time. Regions of XPA-MBD with the largest increases in S2 overlapped regions having the largest chemical shifts changes upon binding DNA, indicating that the loop-rich subdomain becomes more rigid upon binding DNA. Interestingly, S2 decreased for some residues in the zinc-binding core upon DNA association, indicating a possible concerted structural rearrangement on binding DNA.  相似文献   

8.
Replication Protein A is a single-stranded (ss) DNA-binding protein that is highly conserved in eukaryotes and plays essential roles in many aspects of nucleic acid metabolism, including replication, recombination, DNA repair and telomere maintenance. It is a heterotrimeric complex consisting of three subunits: RPA1, RPA2 and RPA3. It possesses four DNA-binding domains (DBD), DBD-A, DBD-B and DBD-C in RPA1 and DBD-D in RPA2, and it binds ssDNA via a multistep pathway. Unlike the RPA1 and RPA2 subunits, no ssDNA-RPA3 interaction has as yet been observed although RPA3 contains a structural motif found in the other DBDs. We show here using 4-thiothymine residues as photoaffinity probe that RPA3 interacts directly with ssDNA on the 3′-side on a 31 nt ssDNA.The replication protein A (RPA) is a single-stranded (ss) DNA-binding protein that is highly conserved in eukaryotes (1–3). RPA is one of the key players in various essential processes of DNA metabolism including replication, recombination, DNA repair and telomere maintenance (1,2,4–9). The functions of this protein are based on its DNA-binding activity and specific protein–protein interactions. Its ssDNA binding properties depend on DNA length and nucleotide sequence (6,10–13). RPA is a heterotrimeric protein, composed of 70-, 32- and 14-kDa subunits, commonly referred to as RPA1, RPA2 and RPA3, respectively. There are four DNA-binding domains (DBD) located in RPA1 (DBD A, DBD B, DBD C and DBD F), one located in RPA2 (DBD D) and one belongs to RPA3 (DBD E). RPA interacts with ssDNA via four DBD: DBD A, DBD B, DBD C and DBD D (14).It is now accepted (11) that RPA binds to ssDNA in a sequential pathway with a defined polarity (15–17). RPA binds ssDNA with three different binding modes. First, binding initially involves an unstable recognition site of 8–10 nt with the high-affinity DBD A and DBD B domains on the 5′-side of the occluded ssDNA; it is designated ‘compact conformation’ or 8–10 nt binding mode. Second, this step is followed by the weaker binding of DBD C, on the 3′-side, leading to an intermediate or ‘elongated contracted’ (13–22 nt) binding mode (18–19). Finally binding of DBD D on the 3′-side forms a stable ‘elongated extended’ complex characterized by a 30 nt long occluded binding site (30 nt binding mode). Although RPA3 contains an Oligonucleotide-Binding (OB)-fold motif found in the other DBDs, there is presently no biochemical evidence that this subunit directly contacts DNA. Thus positioning of the RPA3 subunit relative to the other domains is still speculative (11,20). It has been clearly demonstrated that RPA3 is crucial for RPA function (1,2): RPA3 is involved in heterotrimer formation and is responsible for the polarity of binding to DNA (11,21,22). The scope of the data indicates that either RPA3 participates only in protein–protein interactions or that putative interaction of RPA3 with ssDNA is unstable and too transient to be detected by standard biochemical experiments. This latter possibility is likely if such interaction is provided by the 3′-side of the ssDNA, since it has been suggested that this region might be transiently accessible to the RPA DBD domains (23,24).In the past few years, thionucleobases have been extensively used as intrinsic photolabels to probe the structure in solution of folded molecules and to identify transient contacts within nucleic acids and/or between nucleic acids and proteins, in nucleoprotein assemblies (25). Thio residues such as 4-thiothymine and 6-thioguanine absorb light at wavelengths longer than 320 nm, and thus can be selectively photo-activated. Owing to the high photo-reactivity of their triplet state, they exhibit high photo-cross-linking ability towards nucleic acid bases as well as towards amino acid residues. Here we used a combination of approaches including gel retardation assays, chemical cross-linking and cross-linking with photoreactive ssDNA probes containing 4-thiothymine, introduced at a defined site in the sequence of the ssDNA, to study interactions present in human RPA (hRPA): ssDNA complexes. These studies coupled with the identification of cross-linked targets using specific antibodies revealed that in the elongated extended hRPA:ssDNA complex RPA3 closely contacts the 3′-end positioned nucleotide and yields a covalent adduct with zero-length photolabel.  相似文献   

9.
Human replication protein A (hRPA), a heterotrimeric single-stranded DNA (ssDNA) binding protein, is required for many cellular pathways including DNA damage repair, recombination, and replication as well as the ATR-mediated DNA damage response. While extensive effort has been devoted to understanding the structural relationships between RPA and ssDNA, information is currently limited to the RPA domains, the trimerization core, and a partial cocrystal structure. In this work, we employed a mass spectrometric protein footprinting method of single amino acid resolution to investigate the interactions of the entire heterotrimeric hRPA with ssDNA. In particular, we monitored surface accessibility of RPA lysines with NHS-biotin modification in the contexts of the free protein and the nucleoprotein complex. Our results not only indicated excellent agreement with the available crystal structure data for RPA70 DBD-AB-ssDNA complex but also revealed new protein contacts in the nucleoprotein complex. In addition to two residues, K263 and K343 of p70, previously identified by cocrystallography as direct DNA contacts, we observed protection of five additional lysines (K183, K259, K489, K577, and K588 of p70) upon ssDNA binding to RPA. Three residues, K489, K577, and K588, are located in ssDNA binding domain C and are likely to establish the direct contacts with cognate DNA. In contrast, no ssDNA-contacting lysines were identified in DBD-D. In addition, two lysines, K183 and K259, are positioned outside the putative ssDNA binding cleft. We propose that the protection of these lysines could result from the RPA interdomain structural reorganization induced by ssDNA binding.  相似文献   

10.
PriB is a primosomal protein required for replication restart in Escherichia coli. PriB stimulates PriA helicase activity via interaction with single-stranded DNA (ssDNA), but the molecular details of this interaction remain unclear. Here, we report the crystal structure of PriB complexed with a 15 bases oligonucleotide (dT15) at 2.7 Å resolution. PriB shares structural similarity with the E.coli ssDNA-binding protein (EcoSSB). However, the structure of the PriB–dT15 complex reveals that PriB binds ssDNA differently. Results from filter-binding assays show that PriB–ssDNA interaction is salt-sensitive and cooperative. Mutational analysis suggests that the loop L45 plays an important role in ssDNA binding. Based on the crystal structure and biochemical analyses, we propose a cooperative mechanism for the binding of PriB to ssDNA and a model for the assembly of the PriA–PriB–ssDNA complex. This report presents the first structure of a replication restart primosomal protein complexed with DNA, and a novel model that explains the interactions between a dimeric oligonucleotide-binding-fold protein and ssDNA.  相似文献   

11.
U Schweizer  T Hey  G Lipps    G Krauss 《Nucleic acids research》1999,27(15):3183-3189
The repair proteins XPA, XPC and replication protein A (RPA) have been implicated in the primary recognition of damaged DNA sites during nucleotide excision repair. Detailed structural information on the binding of these proteins to DNA lesions is however lacking. We have studied the binding of human RPA (hRPA) and hRPA-XPA-complexes to model oligonucleo-tides containing a single 1, 3-d(GTG)-cisplatin-modification by photocrosslinking and electrophoretic mobility shift experiments. The 70 kDa subunit of hRPA can be crosslinked with high efficiency to cisplatin-modified DNA probes carrying 5-iodo-2"-deoxyuridin (5-IdU) as crosslinking chromophore. High efficiency crosslinking is dependent on the presence of the DNA lesion and occurs preferentially at its 5"-side. Examination of the crosslinking efficiency in dependence on the position of the 5-IdU chromophore indicates a specific positioning of hRPA with respect to the platination site. When hRPA and XPA are both present mainly hRPA is crosslinked to the DNA. Our mobility shift experiments directly show the formation of a stable ternary complex of hRPA, XPA and the damaged DNA. The affinity of the XPA-hRPA complex to the damaged DNA is increased by more than one order of magnitude as compared to hRPA alone.  相似文献   

12.
XPA is a central protein component of nucleotide excision repair (NER), a ubiquitous, multi-component cellular pathway responsible for the removal and repair of many structurally distinct DNA lesions from the eukaryotic genome. The solution structure of the minimal DNA-binding domain of XPA (XPA-MBD: M98-F219) has recently been determined and chemical shift mapping experiments with 15N-labeled XPA-MBD show that XPA binds DNA along a basic surface located in the C-terminal loop-rich subdomain. Here, XPA-DNA interactions are further characterized using an XPA fragment containing the minimal DNA-binding domain plus the ERCC1-binding region (XPA-EM: M59-F219). The 15N/1H HSQC spectrum of XPA-EM closely maps onto the 15N/1H HSQC spectrum of XPA-MBD, suggesting the DNA-binding domain is intact in the larger XPA fragment. Such a conclusion is corroborated by chemical shift mapping experiments of XPA-EM with a single strand DNA oligomer, dCCAATAACC (d9), that show the same set of 15N/1H HSQC cross peaks are effected by the addition of DNA. However, relative to DNA-free XPA-MBD, the 15N/1H HSQC cross peaks of many of the basic residues in the loop-rich subdomain of DNA-free XPA-EM are less intense, or gone altogether, suggesting the acidic ERRC1-binding region of XPA-EM may associate transiently with the basic DNA-binding surface. While the DNA-binding domain in XPA-EM is structured and functional, 15N-edited NOESY spectra of XPA-EM indicate that the acidic ERRC1-binding region is unstructured. If the structural features observed for XPA-EM persist in XPA, transient intramolecular association of the ERCC1-binding domain with the DNA-binding region may play a role in the sequential assembly of the NER components.  相似文献   

13.
Single-stranded-DNA-binding proteins (SSBs) are required for numerous genetic processes ranging from DNA synthesis to the repair of DNA damage, each of which requires binding with high affinity to ssDNA of variable base composition. To gain insight into the mechanism of sequence-nonspecific binding of ssDNA, NMR chemical shift and (15)N relaxation experiments were performed on an isolated ssDNA-binding domain (RPA70A) from the human SSB replication protein A. The backbone (13)C, (15)N, and (1)H resonances of RPA70A were assigned for the free protein and the d-CTTCA complex. The binding-induced changes in backbone chemical shifts were used to map out the ssDNA-binding site. Comparison to results obtained for the complex with d-C(5) showed that the basic mode of binding is independent of the ssDNA sequence, but that there are differences in the binding surfaces. Amide nitrogen relaxation rates (R(1) and R(2)) and (1)H-(15)N NOE values were measured for RPA70A in the absence and presence of d-CTTCA. Analysis of the data using the Model-Free formalism and spectral density mapping approaches showed that the structural changes in the binding site are accompanied by some significant changes in flexibility of the primary DNA-binding loops on multiple timescales. On the basis of these results and comparisons to related proteins, we propose that the mechanism of sequence-nonspecific binding of ssDNA involves dynamic remodeling of the binding surface.  相似文献   

14.
Walther AP  Gomes XV  Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3963-3973
Human replication protein A (RPA) is a multiple subunit single-stranded DNA-binding protein that is required for multiple processes in cellular DNA metabolism. This complex, composed of subunits of 70, 32, and 14 kDa, binds to single-stranded DNA (ssDNA) with high affinity and participates in multiple protein-protein interactions. The 70-kDa subunit of RPA is known to be composed of multiple domains: an N-terminal domain that participates in protein interactions, a central DNA-binding domain (composed of two copies of a ssDNA-binding motif), a putative (C-X2-C-X13-C-X2-C) zinc finger, and a C-terminal intersubunit interaction domain. A series of mutant forms of RPA were used to elucidate the roles of these domains in RPA function. The central DNA-binding domain was necessary and sufficient for interactions with ssDNA; however, adjacent sequences, including the zinc-finger domain and part of the N-terminal domain, were needed for optimal ssDNA-binding activity. The role of aromatic residues in RPA-DNA interactions was examined. Mutation of any one of the four aromatic residues shown to interact with ssDNA had minimal effects on RPA activity, indicating that individually these residues are not critical for RPA activity. Mutation of the zinc-finger domain altered the structure of the RPA complex, reduced ssDNA-binding activity, and eliminated activity in DNA replication.  相似文献   

15.
Lao Y  Gomes XV  Ren Y  Taylor JS  Wold MS 《Biochemistry》2000,39(5):850-859
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (subunits of 70, 32, and 14 kDa) that is required for cellular DNA metabolism. RPA has been reported to interact specifically with damaged double-stranded DNA and to participate in multiple steps of nucleotide excision repair (NER) including the damage recognition step. We have examined the mechanism of RPA binding to both single-stranded and double-stranded DNA (ssDNA and dsDNA, respectively) containing damage. We show that the affinity of RPA for damaged dsDNA correlated with disruption of the double helix by the damaged bases and required RPAs ssDNA-binding activity. We conclude that RPA is recognizing single-stranded character caused by the damaged nucleotides. We also show that RPA binds specifically to damaged ssDNA. The specificity of binding varies with the type of damage with RPA having up to a 60-fold preference for a pyrimidine(6-4)pyrimidone photoproduct. We show that this specific binding was absolutely dependent on the zinc-finger domain in the C-terminus of the 70-kDa subunit. The affinity of RPA for damaged ssDNA was 5 orders of magnitude higher than that of the damage recognition protein XPA (xeroderma pigmentosum group A protein). These findings suggest that RPA probably binds to both damaged and undamaged strands in the NER excision complex. RPA binding may be important for efficient excision of damaged DNA in NER.  相似文献   

16.
XPA (xeroderma pigmentosum group A) protein is an essential factor for NER (nucleotide excision repair) which is believed to be involved in DNA damage recognition/verification, NER factor recruiting and stabilization of repair intermediates. Past studies on the structure of XPA have focused primarily on XPA interaction with damaged DNA. However, how XPA interacts with other DNA structures remains unknown though recent evidence suggest that these structures could be important for its roles in both NER and non-NER activities. Previously, we reported that XPA recognizes undamaged DNA ds/ssDNA (double-strand/single-strandDNA) junctions with a binding affinity much higher than its ability to bind bulky DNA damage. To understand how this interaction occurs biochemically we implemented a structural determination of the interaction using a MS-based protein footprinting method and limited proteolysis. By monitoring surface accessibility of XPA lysines to NHS-biotin modification in the free protein and the DNA junction-bound complex we show that XPA physically interacts with the DNA junctions via two lysines, K168 and K179, located in the previously known XPA(98–219) DBD (DNA-binding domain). Importantly, we also uncovered new lysine residues, outside of the known DBD, involved in the binding. We found that residues K221, K222, K224 and K236 in the C-terminal domain are involved in DNA binding. Limited proteolysis analysis of XPA–DNA interactions further confirmed this observation. Structural modelling with these data suggests a clamp-like DBD for the XPA binding to ds/ssDNA junctions. Our results provide a novel structure-function view of XPA–DNA junction interactions.  相似文献   

17.
Processing of DNA in replication, repair and recombination pathways in cells of all organisms requires the participation of at least one major single-stranded DNA (ssDNA)-binding protein. This protein protects ssDNA from nucleolytic damage, prevents hairpin formation and blocks DNA reannealing until the processing pathway is successfully completed. Many ssDNA-binding proteins interact physically and functionally with a variety of other DNA processing proteins. These interactions are thought to temporally order and guide the parade of proteins that ‘trade places’ on the ssDNA, a model known as ‘hand-off’, as the processing pathway progresses. How this hand-off mechanism works remains poorly understood. Recent studies of the conserved eukaryotic ssDNA-binding protein replication protein A (RPA) suggest a novel mechanism by which proteins may trade places on ssDNA by binding to RPA and mediating conformation changes that alter the ssDNA-binding properties of RPA. This article reviews the structure and function of RPA, summarizes recent studies of RPA in DNA replication and other DNA processing pathways, and proposes a general model for the role of RPA in protein-mediated hand-off.  相似文献   

18.
The role for zinc in replication protein A   总被引:6,自引:0,他引:6  
Heterotrimeric human single-stranded DNA (ssDNA)-binding protein, replication protein A (RPA), is a central player in DNA replication, recombination, and repair. The C terminus of the largest subunit, RPA70, contains a putative zinc-binding motif and is implicated in complex formation with two smaller subunits, RPA14 and RPA32. The C-terminal domain of RPA70 (RPA70-CTD) was characterized using proteolysis and x-ray fluorescence emission spectroscopy. The proteolytic core of this domain comprised amino acids 432-616. X-ray fluorescence spectra revealed that RPA70-CTD possesses a coordinated Zn(II). The trimeric complex of RPA70-CTD, the ssDNA-binding domain of RPA32 (amino acids 43-171), and RPA14 had strong DNA binding activity. When properly coordinated with zinc, the trimer's affinity to ssDNA was only 3-10-fold less than that of the ssDNA-binding domain in the middle of RPA70. However, the DNA-binding activity of the trimer was dramatically reduced in the presence of chelating agents. Our data indicate that (i) Zn(II) is essential to stabilize the tertiary structure of RPA70-CTD; (ii) RPA70-CTD possesses DNA-binding activity, which is modulated by Zn(II); and (iii) ssDNA binding by the trimer is a synergistic effect generated by the RPA70-CTD and RPA32.  相似文献   

19.
Cdc13, the telomere end-binding protein from Saccharomyces cerevisiae, is a multidomain protein that specifically binds telomeric single-stranded DNA (ssDNA) with exquisitely high affinity to coordinate telomere maintenance. Recent structural and genetic data have led to the proposal that Cdc13 is the paralog of RPA70 within a telomere-specific RPA complex. Our understanding of Cdc13 structure and biochemistry has been largely restricted to studies of individual domains, precluding analysis of how each domain influences the activity of the others. To better facilitate a comparison to RPA70, we evaluated the ssDNA binding of full-length S. cerevisiae Cdc13 to its minimal substrate, Tel11. We found that, unlike RPA70 and the other known telomere end-binding proteins, the core Cdc13 ssDNA-binding activity is wholly contained within a single tight-binding oligosaccharide/oligonucleotide/oligopeptide binding (OB)-fold. Because two OB-folds are implicated in dimerization, we also evaluated the relationship between dimerization and ssDNA-binding activity and found that the two activities are independent. We also find that Cdc13 binding exhibits positive cooperativity that is independent of dimerization. This study reveals that, while Cdc13 and RPA70 share similar domain topologies, the corresponding domains have evolved different and specialized functions.  相似文献   

20.
In mammalian cells, nucleotide excision repair (NER) is the major pathway for the removal of bulky DNA adducts. Many of the key NER proteins are members of the XP family (XPA, XPB, etc.), which was named on the basis of its association with the disorder xerodoma pigmentosum. Human replication protein A (RPA), the ubiquitous single-stranded DNA-binding protein, is another of the essential proteins for NER. RPA stimulates the interaction of XPA with damaged DNA by forming an RPA–XPA complex on damaged DNA sites. Binding of RPA to the undamaged DNA strand is most important during NER, because XPA, which directs the excision nucleases XPG and XPF, must bind to the damaged strand. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to assess the binding of the tandem high affinity DNA-binding domains, RPA-AB, and of the isolated domain RPA-A, to normal DNA and damaged DNA containing the cyclobutane pyrimidine dimer (CPD) lesion. Both RPA-A and RPA-AB were found to bind non- specifically to both strands of normal and CPD- containing DNA duplexes. There were no differences observed when binding to normal DNA duplex was examined in the presence of the minimal DNA-binding domain of XPA (XPA-MBD). However, there is a drastic difference for CPD-damaged DNA duplex as both RPA-A and RPA-AB bind specifically to the undamaged strand. The strand-specific binding of RPA and XPA to the damaged duplex DNA shows that RPA and XPA play crucial roles in damage verification and guiding cleavage of damaged DNA during NER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号