首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Branching morphogenesis is central to epithelial organogenesis. In the developing kidney, the epithelial ureteric bud invades the metanephric mesenchyme, which directs the ureteric bud to undergo repeated branching. A soluble factor(s) in the conditioned medium of a metanephric mesenchyme cell line is essential for multiple branching morphogenesis of the isolated ureteric bud. The identity of this factor had proved elusive, but it appeared distinct from factors such as HGF and EGF receptor ligands that have been previously implicated in branching morphogenesis of mature epithelial cell lines. Using sequential column chromatography, we have now purified to apparent homogeneity an 18 kDa protein, pleiotrophin, from the conditioned medium of a metanephric mesenchyme cell line that induces isolated ureteric bud branching morphogenesis in the presence of glial cell-derived neurotrophic factor. Pleiotrophin alone was also found to induce the formation of branching tubules in an immortalized ureteric bud cell line cultured three-dimensionally in an extracellular matrix gel. Consistent with an important role in ureteric bud morphogenesis during kidney development, pleiotrophin was found to localize to the basement membrane of the developing ureteric bud in the embryonic kidney. We suggest that pleiotrophin could act as a key mesenchymally derived factor regulating branching morphogenesis of the ureteric bud and perhaps other embryonic epithelial structures.  相似文献   

2.
Branching of ureteric bud-derived epithelial tubes is a key morphogenetic process that shapes development of the kidney. Glial cell line-derived neurotrophic factor (GDNF) initiates ureteric bud formation and promotes subsequent branching morphogenesis. Exactly how GDNF coordinates branching morphogenesis is unclear. Here we show that the absence of the receptor tyrosine kinase antagonist Sprouty1 (Spry1) results in irregular branching morphogenesis characterized by both increased number and size of ureteric bud tips. Deletion of Spry1 specifically in the epithelium is associated with increased epithelial Wnt11 expression as well as increased mesenchymal Gdnf expression. We propose that Spry1 regulates a Gdnf/Ret/Wnt11-positive feedback loop that coordinates mesenchymal-epithelial dialogue during branching morphogenesis. Genetic experiments indicate that the positive (GDNF) and inhibitory (Sprouty1) signals have to be finely balanced throughout renal development to prevent hypoplasia or cystic hyperplasia. Epithelial cysts develop in Spry1-deficient kidneys that share several molecular characteristics with those observed in human disease, suggesting that Spry1 null mice may be useful animal models for cystic hyperplasia.  相似文献   

3.
During kidney development, factors from the metanephric mesenchyme induce the growth and repeated branching of the ureteric bud, which gives rise to the collecting duct system and also induces nephrogenesis. One signaling pathway known to be required for this process includes the receptor tyrosine kinase RET and co-receptor GFR(&agr;)-1, which are expressed in the ureteric bud, and the secreted ligand GDNF produced in the mesenchyme. To examine the role of RET signaling in ureteric bud morphogenesis, we produced transgenic mice in which the pattern of RET expression was altered, or in which a ligand-independent form of RET kinase was expressed. The Hoxb7 promoter was used to express RET throughout the ureteric bud branches, in contrast to its normal expression only at the bud tips. This caused a variable inhibition of ureteric bud growth and branching reminiscent of, but less severe than, the RET knockout phenotype. Manipulation of the level of GDNF, in vitro or in vivo, suggested that this defect was due to insufficient rather than excessive RET signaling. We propose that RET receptors expressed ectopically on ureteric bud trunk cells sequester GDNF, reducing its availability to the normal target cells at the bud tips. When crossed to RET knockout mice, the Hoxb7/RET transgene, which encoded the RET9 isoform, supported normal kidney development in some RET-/- animals, indicating that the other major isoform, RET51, is not required in this organ. Expression of a Hoxb7/RET-PTC2 transgene, encoding a ligand-independent form of RET kinase, caused the development of abnormal nodules, outside the kidney or at its periphery, containing branched epithelial tubules apparently formed by deregulated growth of the ureteric bud. This suggests that RET signaling is not only necessary but is sufficient to induce ureteric bud growth, and that the orderly, centripetal growth of the bud tips is controlled by the spatially and temporally regulated expression of GDNF and RET.  相似文献   

4.
The outgrowth of the ureteric bud from the posterior nephric duct epithelium and the subsequent invasion of the bud into the metanephric mesenchyme initiate the process of metanephric, or adult kidney, development. The receptor tyrosine kinase RET and glial cell-derived neurotrophic factor (GDNF) form a signaling complex that is essential for ureteric bud growth and branching morphogenesis of the ureteric bud epithelium. We demonstrate that Pax2 expression in the metanephric mesenchyme is independent of induction by the ureteric bud. Pax2 mutants are deficient in ureteric bud outgrowth and do not express GDNF in the uninduced metanephric mesenchyme. Furthermore, Pax2 mutant mesenchyme is unresponsive to induction by wild-type heterologous inducers. In normal embryos, GDNF is sufficient to induce ectopic ureter buds in the posterior nephric duct, a process inhibited by bone morphogenetic protein 4. However, GDNF replacement in organ culture is not sufficient to stimulate ureteric bud outgrowth from Pax2 mutant nephric ducts, indicating additional defects in the nephric duct epithelium of Pax2 mutants. Pax2 can activate expression of GDNF in cell lines derived from embryonic metanephroi. Furthermore, Pax2 protein can bind to upstream regulatory elements within the GDNF promoter region and can transactivate expression of reporter genes. Thus, activation of GDNF by Pax2 coordinates the position and outgrowth of the ureteric bud such that kidney development can begin.  相似文献   

5.
Differentiation is the process by which tissues/organs take on their final, physiologically functional form. This process is mediated in part by the silencing of embryonic genes and the activation of terminal, differentiation gene products. Mammalian kidney development is initiated when the Wolffian duct branches and invades the overlying metanephric mesenchyme. The newly formed epithelial bud, known as the ureteric bud, will continue to branch ultimately differentiating into the collecting duct system and ureter. Here, we show that Hoxb7-Cre mediated removal of β-catenin from the mouse Wolffian duct epithelium leads to the premature expression of gene products normally associated with the differentiated kidney collecting duct system including the water channel protein, Aquaporin-3 and the tight junction protein isoform, ZO-1α+. Mutant cells fail to maintain expression of some genes associated with embryonic development, including several mediators of branching morphogenesis, which subsequently leads to kidney aplasia or hypoplasia. Reciprocally, expression of a stabilized form of β-catenin appears to block differentiation of the collecting ducts. All of these defects occur in the absence of any effects on the adherens junctions. These data indicate a role for β-catenin in maintaining cells of the Wolffian ducts and the duct derived ureteric bud/collecting duct system in an undifferentiated or precursor state.  相似文献   

6.
The mechanisms by which the branching of epithelial tissue occurs and is regulated to generate different organ structures are not well understood. In this work, image analyses of the organ rudiments demonstrate specific epithelial branching patterns for the early lung and kidney; the lung type typically generating several side branches, whereas kidney branching was mainly dichotomous. Parameters such as the number of epithelial tips, the angle of the first branch, the position index of the first branch (PIFB) in a module, and the percentage of epithelial module type (PMT) were analysed. The branching patterns in the cultured lung and kidney, and in homotypic tissue recombinants recapitulated their early in vivo branching patterns. The parameters were applied to heterotypic tissue recombinants between lung mesenchyme and ureteric bud, and tip number, PIFB and PMT values qualified the change in ureter morphogenesis and the reprogramming of the ureteric bud with lung mesenchyme. All the values for the heterotypic recombinant between ureteric bud and lung mesenchyme were significantly different from those for kidney samples but similar to those of the lung samples. Hence, lung mesenchyme can instruct the ureteric bud to undergo aspects of early lung-type epithelial morphogenesis. Different areas of the lung mesenchyme, except the tracheal region, were sufficient to promote ureteric bud growth and branching. In conclusion, our findings provide morphogenetic parameters for monitoring epithelial development in early embryonic lung and kidney and demonstrate the use of heterotypic tissue recombinants as a model for studying tissue-specific epithelial branching during organogenesis.  相似文献   

7.
Organ rudiments with their epithelial bud and adjacent mesenchyme look much the same at their initial stage of differentiation. The subsequent branching of the epithelial anlagen determines the final pattern of the organs, but the mesenchyme provides essential signals for epithelial differentiation. Glial cell line derived neurotrophic factor (GDNF) has recently been shown to regulate ureteric branching morphogenesis and is thereby the first defined signalling molecule in the embryonic metanephric kidney. GDNF is expressed by the mesenchyme, binds to the tip of the ureteric bud and functions in both bud induction and bud orientation. The active receptor complex for GDNF includes the receptor tyrosine kinase Ret and a novel class of glycosylphosphatidylinositol-linked receptors, called GDNF family receptor αs.  相似文献   

8.
9.
10.
The role of GDNF in patterning the excretory system   总被引:5,自引:0,他引:5  
Mesenchymal-epithelial interactions are an important source of information for pattern formation during organogenesis. In the developing excretory system, one of the secreted mesenchymal factors thought to play a critical role in patterning the growth and branching of the epithelial ureteric bud is GDNF. We have tested the requirement for GDNF as a paracrine chemoattractive factor by altering its site of expression during excretory system development. Normally, GDNF is secreted by the metanephric mesenchyme and acts via receptors on the Wolffian duct and ureteric bud epithelium. Misexpression of GDNF in the Wolffian duct and ureteric buds resulted in formation of multiple, ectopic buds, which branched independently of the metanephric mesenchyme. This confirmed the ability of GDNF to induce ureter outgrowth and epithelial branching in vivo. However, in mutant mice lacking endogenous GDNF, kidney development was rescued to a substantial degree by GDNF supplied only by the Wolffian duct and ureteric bud. These results indicate that mesenchymal GDNF is not required as a chemoattractive factor to pattern the growth of the ureteric bud within the developing kidney, and that any positional information provided by the mesenchymal expression of GDNF may provide for renal branching morphogenesis is redundant with other signals.  相似文献   

11.
Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways   总被引:1,自引:0,他引:1  
Vascular endothelial growth factor (VEGF-A) plays multiple roles in kidney development: stimulates cell proliferation, survival, tubulogenesis, and branching morphogenesis. However, the mechanism that mediates VEGF-A induced ureteric bud branching is unclear. Glial-derived neurotrophic factor (GDNF) signaling through tyrosine kinase c-RET is the major regulator of ureteric bud branching. Here we examined whether VEGF-A regulates RET signaling. We determined that ureteric bud-derived cells express the main VEGF-A signaling receptor, VEGFR2 and RET, by RT-PCR, immunoblotting, and immunocytochemistry. We show that the VEGF-A isoform VEGF(165) induces RET-tyr(1062) phosphorylation in addition to VEGFR2 autophosphorylation, that VEGF(165) and GDNF have additive effects on RET-tyr(1062) phosphorylation, and that VEGFR2 and RET co-immunoprecipitate. Functionally, VEGF(165) induces ureteric bud cell proliferation and branching morphogenesis. Similarly, in embryonic kidney explants VEGF(165) induces RET-tyr(1062) phosphorylation and upregulates GDNF. These findings provide evidence for a novel cooperative interaction between VEGFR2 and RET that mediates VEGF-A functions in ureteric bud cells.  相似文献   

12.
The c-ret gene encodes a receptor tyrosine kinase (RET) essential for the development of the kidney and enteric nervous system. Activation of RET requires the secreted neurotrophin GDNF (glial cell line-derived neurotrophic factor) and its high affinity receptor, a glycosyl phosphatidylinositol-linked cell surface protein GFRalpha1. In the developing kidney, RET, GDNF, and GFRalpha1 are all required for directed outgrowth and branching morphogenesis of the ureteric bud epithelium. Using MDCK renal epithelial cells as a model system, activation of RET induces cell migration, scattering, and formation of filopodia and lamellipodia. RET-expressing MDCK cells are able to migrate toward a localized source of GDNF. In this report, the intracellular signaling mechanisms regulating RET-dependent migration and chemotaxis are examined. Activation of RET resulted in increased levels of phosphatidylinositol 3-kinase (PI3K) activity and Akt/PKB phosphorylation. This increase in PI3K activity is essential for regulating the GDNF response, since the specific inhibitor, LY294002, blocks migration and chemotaxis of MDCK cells. Using an in vitro organ culture assay, inhibition of PI3K completely blocks the GDNF-dependent outgrowth of ectopic ureter buds. PI3K is also essential for branching morphogenesis once the ureteric bud has invaded the kidney mesenchyme. The data suggest that activation of RET in the ureteric bud epithelium signals through PI3K to control outgrowth and branching morphogenesis.  相似文献   

13.
The development of the permanent mammalian kidney, or metanephros, depends on mesenchymal-epithelial interactions, leading to branching morphogenesis of the ureteric bud that forms the collecting ducts and to conversion of the metanephric mesenchyme into epithelium that forms the nephrons. Rat metanephric organ culture in which these interactions are maintained is a valuable in vitro model system for investigating normal and abnormal renal organogenesis. Methods were designed to evaluate either the capacity of the ureteric bud to branch or that of the mesenchyme to form nephrons. Both are based on specific staining of the ureteric bud and the glomeruli with lectins. Using this approach, we have shown that retinoids are potent stimulating factors of nephrogenesis, acting through an increase in the branching capacity of the ureteric bud. On the other hand, several drugs such as gentamicin and cyclosporin A were found to reduce the number of nephrons formed in vitro. While gentamicin affects the early branching pattern of the ureteric bud, cyclosporin may affect the capacity of the mesencyme to convert into epithelium. This methodology therefore appears a potentially useful tool for toxicological studies new drugs.  相似文献   

14.
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.Key Words: growth factor, proliferation, apoptosis, ureteric bud, branching morphogenesis, epithelial progenitor, development, signaling  相似文献   

15.
Understanding the cellular events that underlie epithelial morphogenesis is a key problem in developmental biology. Here, we describe a new transgenic mouse line that makes it possible to visualize individual cells specifically in the Wolffian duct and ureteric bud, the epithelial structures that give rise to the collecting system of the kidney. myr‐Venus, a membrane‐associated form of the fluorescent protein Venus, was expressed in the ureteric bud lineage under the control of the Hoxb7 promoter. In Hoxb7/myr‐Venus mice, the outlines of all Wolffian duct and ureteric bud epithelial cells are strongly labeled at all stages of urogenital development, allowing the shapes and arrangements of individual cells to be readily observed by confocal microscopy of freshly excised or cultured kidneys. This strain should be extremely useful for studies of cell behavior during ureteric bud branching morphogenesis in wild type and mutant mouse lines. genesis 47:61–66, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
Epithelial morphogenesis is critical during development and wound healing, and alterations in this program contribute to neoplasia. Met, the hepatocyte growth factor (HGF) receptor, promotes a morphogenic program in epithelial cell lines in matrix cultures. Previous studies have identified Gab1, the major phosphorylated protein following Met activation, as important for the morphogenic response. Gab1 is a docking protein that couples the Met receptor with multiple signaling proteins, including phosphatidylinositol-3 kinase, phospholipase Cgamma, the adapter protein Crk, and the tyrosine specific phosphatase SHP-2. HGF induces sustained phosphorylation of Gab1 and sustained activation of extracellular signal-regulated kinase (Erk) in epithelial Madin-Darby canine kidney cells. In contrast, epidermal growth factor fails to promote a morphogenic program and induces transient Gab1 phosphorylation and Erk activation. To elucidate the Gab1-dependent signals required for epithelial morphogenesis, we undertook a structure-function approach and demonstrate that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor. Epithelial cells expressing a Gab1 mutant protein unable to recruit SHP-2 elicit a transient activation of Erk in response to HGF. Moreover, SHP-2 catalytic activity is required, since the expression of a catalytically inactive SHP-2 mutant, C/S, abrogates sustained activation of Erk and epithelial morphogenesis by the Met receptor. These data identify SHP-2 as a positive modulator of Erk activity and epithelial morphogenesis downstream from the Met receptor.  相似文献   

17.
The polycystic kidney disease (PKD1) gene-encoded protein, polycystin-1, is developmentally regulated, with highest expression levels seen in normal developing kidneys, where it is distributed in a punctate pattern at the basal surface of ureteric bud epithelia. Overexpression in ureteric epithelial cell membranes of an inhibitory pMyr-GFP-PKD1 fusion protein via a retroviral (VVC) delivery system and microinjection into the ureteric bud lumen of embryonic day 11 mouse metanephric kidneys resulted in disrupted branching morphogenesis. Using confocal quantitative analysis, significant reductions were measured in the numbers of ureteric bud branch points and tips, as well as in the total ureteric bud length, volume and area, while significant increases were seen as dilations of the terminal branches, where significant increases in outer diameter and volumes were measured. Microinjection of an activating 5TM-GFP-PKD1 fusion protein had an opposite effect and showed significant increases in ureteric bud length and area. These are the first studies to experimentally manipulate polycystin-1 expression by transduction in the embryonic mouse kidney and suggest that polycystin-1 plays a critical role in the regulation of epithelial morphogenesis during renal development.  相似文献   

18.
Reciprocal cell-cell interactions between the ureteric epithelium and the metanephric mesenchyme are needed to drive growth and differentiation of the embryonic kidney to completion. Branching morphogenesis of the Wolffian duct derived ureteric bud is integral in the generation of ureteric tips and the elaboration of the collecting duct system. Wnt11, a member of the Wnt superfamily of secreted glycoproteins, which have important regulatory functions during vertebrate embryonic development, is specifically expressed in the tips of the branching ureteric epithelium. In this work, we explore the role of Wnt11 in ureteric branching and use a targeted mutation of the Wnt11 locus as an entrance point into investigating the genetic control of collecting duct morphogenesis. Mutation of the Wnt11 gene results in ureteric branching morphogenesis defects and consequent kidney hypoplasia in newborn mice. Wnt11 functions, in part, by maintaining normal expression levels of the gene encoding glial cell-derived neurotrophic factor (Gdnf). Gdnf encodes a mesenchymally produced ligand for the Ret tyrosine kinase receptor that is crucial for normal ureteric branching. Conversely, Wnt11 expression is reduced in the absence of Ret/Gdnf signaling. Consistent with the idea that reciprocal interaction between Wnt11 and Ret/Gdnf regulates the branching process, Wnt11 and Ret mutations synergistically interact in ureteric branching morphogenesis. Based on these observations, we conclude that Wnt11 and Ret/Gdnf cooperate in a positive autoregulatory feedback loop to coordinate ureteric branching by maintaining an appropriate balance of Wnt11-expressing ureteric epithelium and Gdnf-expressing mesenchyme to ensure continued metanephric development.  相似文献   

19.
Maternal hyperglycemia can inhibit morphogenesis of ureteric bud branching, Glial cell line-derived neurotrophilic factor (GDNF) is a key regulator of the initiation of ureteric branching. Early growth response gene-1 (EGR-1) is an immediate early gene. Preliminary study found EGR-1 persistently expressed with GDNF in hyperglycemic environment. To evaluate the potential relationship of hyperglycemia-GDNF-EGR-1 pathway, in vitro human renal proximal tubular epithelial (HRPTE) cells as target and in vivo streptozotocin-induced mice model were used. Our in vivo microarray, real time-PCR and confocal morphological observation confirmed apoptosis in hyperglycemia-induced fetal nephropathy via activation of the GDNF/MAPK/EGR-1 pathway at E12-E15. Detachment between ureteric branch and metanephrons, coupled with decreasing number and collapse of nephrons on Day 1 newborn mice indicate hyperglycemic environment suppress ureteric bud to invade metanephric rudiment. In vitro evidence proved that high glucose suppressed HRPTE cell migration and enhanced GDNF-EGR-1 pathway, inducing HRPTE cell apoptosis. Knockdown of EGR-1 by siRNA negated hyperglycemic suppressed GDNF-induced HRPTE cells. EGR-1 siRNA also reduced GDNF/EGR-1-induced cRaf/MEK/ERK phosphorylation by 80%. Our findings reveal a novel mechanism of GDNF/MAPK/EGR-1 activation playing a critical role in HRPTE cell migration, apoptosis and fetal hyperglycemic nephropathy.  相似文献   

20.
Branching morphogenesis in the developing mammalian kidney involves growth and branching of the ureteric bud (UB), leading to formation of its daughter collecting ducts, calyces, pelvis and ureters. Even subtle defects in the efficiency and/or accuracy of this process have profound effects on the ultimate development of the kidney and result in congenital abnormalities of the kidney and urinary tract. This review summarizes current knowledge regarding a number of genes known to regulate UB development and emphasizes an emerging role for the renin-angiotensin system (RAS) in renal branching morphogenesis. Mutations in the genes encoding components of the RAS in mice cause renal papillary hypoplasia, hydronephrosis, and urinary concentrating defect. These findings imply that UB-derived epithelia are targets for angiotensin (ANG) II actions during metanephric kidney development. Here, it is proposed that papillary hypoplasia in RAS-deficient mice is secondary to an intrinsic defect in the development of the renal medulla. This hypothesis is based on the following observations: (a) UB and surrounding stroma express angiotensinogen (AGT) and ANG II AT1 receptors in vivo; (b) ANG II stimulates UB cell process extension, branching and cord formation in collagen gel cultures in vitro; and (c) AT1 blockade inhibits ANG II-induced UB cell branching. It is further postulated that ANG II is a novel stroma-derived factor involved in stroma/UB cross-talk which regulates UB branching morphogenesis.Key Words: kidney development, branching morphogenesis, renin-angiotensin, stromal mesenchyme, ureteric bud  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号