首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A systematic evaluation of the selection criteria of non-aqueous phases in two liquid phase bioreactors (TLPBs), also named two-phase partitioning bioreactors (TPPBs), was carried out using the biodegradation of α-pinene by Pseudomonas fluorescens NCIMB 11671 as a model process. A preliminary solvent screening was thus carried out among the most common non-aqueous phases reported in literature for volatile organic contaminants biodegradation in TLPBs: silicon oil, paraffin oil, hexadecane, diethyl sebacate, dibutyl-phtalate, FC 40, 1,1,1,3,5,5,5-heptamethyltrisiloxane (HMS), and 2,2,4,4,6,8,8-heptamethylnonane (HMN). FC 40, silicone oil, HMS, and HMN were first selected based on its biocompatibility, resistance to microbial attack, and α-pinene mass transport characteristics. FC 40, HMS, HMN, and silicone oil at 10% (v/v) enhanced α-pinene mass transport from the gas to the liquid phase by a factor of 3.8, 14.8, 11.4, and 8.6, respectively, compared to a single-phase aqueous system. FC 40 and HMN were finally compared for their ability to enhance α-pinene biodegradation in a mechanically agitated bioreactor. The use of FC 40 or HMN (both at 10% v/v) sustained non-steady state removal efficiencies (RE) and elimination capacities (EC) approximately 7 and 12 times higher than those achieved in the system without an organic phase, respectively. In addition, preliminary results showed that P fluorescens could uptake and mineralize α-pinene directly from the non aqueous phase.  相似文献   

2.
2-Ethylhexyl nitrate (2-EHN) is a widely–used chemical which is commonly added to diesel oil to boost its cetane index. The 2-EHN molecule is recalcitrant to biodegradation but still utilized as sole carbon source by Mycobacterium austroafricanum IFP 2173. The incomplete degradation of 2-EHN by this strain results in the accumulation of an intermediary metabolite i.e. 4-ethyldihydrofuran-2(3H)-one (4-EDF). The study aimed at isolating 4-EDF degraders in order to achieve total mineralization of 2-EHN in cocultures with M. austroafricanum IFP 2173. Bacterial isolates were obtained from diesel-contaminated soil by enrichment in serial cultures supplemented with 4-EDF, the degradation of which was monitored by CO2 measurements. Two strains were isolated and identified as Bacillus cereus and Burkholderia sp., respectively. Complete mineralization of 2-EHN was achieved by associating M. austroafricanum IFP 2173 with either bacterial isolate in cocultures. In the context of environmental acceptability, efficient degradation of a potentially persistent pollutant by a bacterial consortium is demonstrated.  相似文献   

3.
2-Ethyhexyl nitrate (2-EHN) is a major additive of fuel that is used to increase the cetane number of diesel. Because of its wide use and possible accidental release, 2-EHN is a potential pollutant of the environment. In this study, Mycobacterium austroafricanum IFP 2173 was selected from among several strains as the best 2-EHN degrader. The 2-EHN biodegradation rate was increased in biphasic cultures where the hydrocarbon was dissolved in an inert non-aqueous-phase liquid, suggesting that the transfer of the hydrophobic substrate to the cells was a growth-limiting factor. Carbon balance calculation, as well as organic-carbon measurement, indicated a release of metabolites in the culture medium. Further analysis by gas chromatography revealed that a single metabolite accumulated during growth. This metabolite had a molecular mass of 114 Da as determined by gas chromatography/mass spectrometry and was provisionally identified as 4-ethyldihydrofuran-2(3H)-one by liquid chromatography-tandem mass spectrometry analysis. Identification was confirmed by analysis of the chemically synthesized lactone. Based on these results, a plausible catabolic pathway is proposed whereby 2-EHN is converted to 4-ethyldihydrofuran-2(3H)-one, which cannot be metabolized further by strain IFP 2173. This putative pathway provides an explanation for the low energetic efficiency of 2-EHN degradation and its poor biodegradability.  相似文献   

4.
The long-term influence of silicone oil 200 cSt (SO200) and 2, 2, 4, 4, 6, 8, 8-heptamethylnonane (HMN) on the cell surface hydrophobicity (CSH) of a hexane-degrading Pseudomonas aeruginosa strain and a toluene-degrading Pseudomonas putida strain was assessed in two-phase partitioning bioreactors under batch and continuous operation. CSH was evaluated using a modified BATH method based on optical density (CSHOD) and colony-forming unit (CSHCFU) measurements. In the presence of HMN, P. aeruginosa turned hydrophobic over the time course as shown by the gradual increase in CSHOD (61 ± 1%) and CSHCFU (53 ± 3%) under batch degradation and in CSHOD (49 ± 0%) under continuous operation. However, P. putida turned hydrophobic only under continuous operation (CSHOD = 28 ±2% {\hbox{CS}}{{\hbox{H}}_{\rm{OD}}} = 28 \pm 2\% ). On the other hand, no significant CSH enhancement was observed in both Pseudomonas strains in the presence of SO200. These results suggested that CSH is species, non-aqueous phase, and cultivation mode dependant, and an inducible property of bacteria. Maximum hexane elimination capacities increased by 2 and 3 in the presence of SO200 and HMN, respectively. Based on the absence of CSH in P. aeruginosa in the presence of SO200, the higher elimination capacities recorded were likely due to an improved hexane mass transfer (physical effect). However, in the presence of HMN, a direct hexane uptake from the non-aqueous phase (biological effect) might have also contributed to this enhancement.  相似文献   

5.
The bacterial community in the activated sludge of a local wastewater treatment plant was studied in an effort to understand and exploit the metabolic versatility of microorganisms for the efficient biological treatment of food waste. Microorganisms capable of and efficient in degrading domestic food waste were screened based on their ability to produce areas of clearing on selective media containing protein, fat, cellulose and starch. Nine microbial species belonging to the genera Flavobacterium, Pseudomonas, Micrococcus, Aeromonas, Xanthomonas, Vibrio and Sphingomonas were found to degrade all components of food waste. These bacteria were added to domestic wastewater and shown to cause a 60% reduction in the biochemical oxygen demand (BOD) level of wastewater compared to a control in which no microorganisms were added. The ability of the microbial consortium to degrade domestic wastewater as evidenced by the decrease in BOD levels suggests its potential for use in the biological treatment of food waste.  相似文献   

6.
Mixed bacterial cultures aerobically transformed decalin (decahydronaphthalene) dissolved in an immiscible carrier phase (heptamethylnonane; HMN) in liquid medium. Conversion was enhanced in the presence of decane, a readily degraded n-alkane, and/or HMN. Four Rhodococcus spp. isolates purified from one of the mixed cultures were active against decalin in the presence of n-decane, but their ability to use decalin as a sole carbon source for growth could not be sustained. Isolate Iso 1a oxidized decalin under co-metabolic conditions with decane vapours as the primary carbon source. Mass spectrometry and comparison to authentic standards showed that the oxidized products of decalin biotransformation were 2-decahydronaphthol and 2-decalone. Some evidence of ring-opening was obtained, but the possible ring-opened product was not definitively identified. These results are consistent with co-metabolic oxidation of decalin by enzymes active toward n-alkanes.  相似文献   

7.
Summary Alcaligenes sp. A 7-2 has been applied in a packed-bed fermenter to degrade 4-chlorophenol in municipal wastewater continuously. With sterile wastewater degradation rates up to 300 mol/l/h were reached when precultivated Alcaligenes sp. A 7-2 had been adsorbed onto the Lecaton-packed-bed-material.The natural microbial population of the wastewater was not able to degrade 4-chlorophenol. Beside an accumulation of the haloaromatic compound a yellow-greenish substance exhibiting the spectral characteristics of 5-chloro-2-hydroxymuconic acid semialdehyde was found.This compound caused a rapid decrease in metabolic activity of the microbial culture.With non-sterile wastewater Alcaligenes sp. A 7-2 could not be established as member of the natural mixed population. Due to the poor retainment of the specialized strain in the packed-bed the degradation capacity of the fermentation system decreased and 4-chlorophenol was accumulated.  相似文献   

8.
Anaerobic benzene degradation was confirmed in microbial communities enriched from Baltimore Harbor (Baltimore, MD) sediments under methanogenic conditions. Molecular characterization based on 16S rDNA gene sequences revealed that the strains in the communities were diversely affiliated with such phylogenetic branches as the Bacteroidetes, Euryarchaeota, Firmicutes, and Thermotogae phyla. Of interest was that the majority of the microbial populations detected in these cultures were closely related to the members of dechlorinating microbial communities. Further, some of those species were previously found in naphthalene- or phenanthrene-degrading methanogenic communities. Finally, this result could be used to design targeted isolation strategies for anaerobic benzene-degrading strains under methanogenic conditions.  相似文献   

9.
Previous research demonstrated that methanogenic cultures enriched from Baltimore Harbor (Baltimore, MD) sediments were able to degrade naphthalene and phenanthrene. In this report, the degradation activity was maintained through a sequential transfer without adding additional sediments and the established polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities were characterized via comparative sequence analysis of clone libraries of 16S rRNA genes amplified using bacteria-specific and Archaea-specific primers. The phylogenetic analysis indicated that the addition of PAHs clearly shifted the structure of the methanogenic community and resulted in an increase in populations of species previously found in other hydrocarbon-degrading communities. Of particular interest is the fact that the dominant microbial population of the naphthalene cultures was different from that of the phenanthrene cultures, suggesting that different species are involved in the degradation. Finally, this information may lead to the identification and isolation of methanogenic populations that can degrade PAHs.  相似文献   

10.
Microorganisms will be an integral part of biologically based waste processing systems used for water purification or nutrient recycling on long-term space missions planned by the National Aeronautics and Space Administration. In this study, the function and stability of microbial inocula of different diversities were evaluated after inoculation into plant-based waste processing systems. The microbial inocula were from a constructed community of plant rhizosphere-associated bacteria and a complexity gradient of communities derived from industrial wastewater treatment plant-activated sludge. Community stability and community function were defined as the ability of the community to resist invasion by a competitor (Pseudomonas fluorescens 5RL) and the ability to degrade surfactant, respectively. Carbon source utilization was evaluated by measuring surfactant degradation and through Biolog and BD oxygen biosensor community level physiological profiling. Community profiles were obtained from a 16S–23S rDNA intergenic spacer region array. A wastewater treatment plant-derived community with the greatest species richness was the least susceptible to invasion and was able to degrade surfactant to a greater extent than the other complexity gradient communities. All communities resisted invasion by a competitor to a greater extent than the plant rhizosphere isolate constructed community. However, the constructed community degraded surfactant to a greater extent than any of the other communities and utilized the same number of carbon sources as many of the other communities. These results demonstrate that community function (carbon source utilization) and community stability (resistance to invasion) are a function of the structural composition of the community irrespective of species richness or functional richness.  相似文献   

11.
Aggregation of bacterial cells is used in formation of microbial granules. Aerobically grown microbial granules can be used as the bio-agents in the treatment of wastewater. However, there are problems with start up of microbial granulation and biosafety of this process. Aim of this research was selection and testing of safe microbial strain with high cell aggregation ability to shorten period of microbial granules formation. Five bacterial strains with cell aggregation index higher than 50% have been isolated from the granules. Strain of Pseudomonas veronii species was considered as most probably safe starter culture for granulation because other strains belonged to the species known as human pathogens. The microbial granules were formed after 3 days of cultivation in case when P. veronii strain B was applied to start-up aerobic granulation process using model wastewater. The granules were produced from activated sludge after 9 days of cultivation. Microbial aggregates produced from starter culture of P. veronii strain B were more compact (sludge volume index was 70 ml/g) than those produced from activated sludge (sludge volume index was 106 ml/g). It is a first proof that application of selected safe starter pure culture with high cell aggregation ability can accelerate and enhance formation of microbial granules.  相似文献   

12.
Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp. and 4BC is a Comamonas sp. Within 33 h, both isolates degraded 100% of 2-NSA in MSM and also 2-NSA in non-sterile tannery wastewater. The yield coefficient was 0.33 g biomass dry weight per gram of 2-NSA. A conceptual model, which describes the aerobic transformation of organic matter, was used for interpreting the biodegradation kinetics of 2-NSA. The half-lives for 2-NSA, at initial concentrations of 100 and 500 mg/l in MSM, ranged from 20 h (2AC) to 26 h (4BC) with lag-phases of 8 h (2AC) and 12 h (4BC). The carbon balance indicates that 75–90% of the initial TOC (total organic carbon) was mineralized, 5–20% remained as DOC (dissolved organic carbon) and 3–10% was biomass carbon. The principal metabolite of 2-NSA biodegradation (in both MSM and tannery wastewater) produced by Comamonas sp. 4BC had a MW of 174 and accounted for the residual DOC (7.0–19.0% of the initial TOC and 66% of the remaining TOC). Three to ten percent of the initial TOC (33% of the remaining TOC) was associated with biomass. The metabolite was not detected when Arthrobacter sp. 2AC was used, and a lower residual DOC and biomass carbon were recorded. This suggests that the two strains may use different catabolic pathways for 2-NSA degradation. The rapid biodegradation of 2-NSA (100 mg/l) added to non-sterile tannery wastewater (total 2-NSA, 105 mg/l) when inoculated with eitherArthrobacter 2AC or Comamonas 4BC showed that both strains were able to compete with the indigenous microorganisms and degrade 2-NSA even in the presence of alternate carbon sources (DOC in tannery wastewater = 91 mg/l). The results provide information useful for the rational design of bioreactors for tannery wastewater treatment.  相似文献   

13.
When the freshwater microalga Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense were deployed as free suspensions in unsterile, municipal wastewater for tertiary wastewater treatment, their population was significantly lower compared with their populations in sterile wastewater. At the same time, the numbers of natural microfauna and wastewater bacteria increased. Immobilization of C. sorokiniana and A. brasilense in small (2–4 mm in diameter), polymer Ca-alginate beads significantly enhanced their populations when these beads were suspended in normal wastewater. All microbial populations within and on the surface of the beads were evaluated by quantitative fluorescence in situ hybridization combined with scanning electron microscopy and direct measurements. Submerging immobilizing beads in wastewater created the following sequence of events: (a) a biofilm composed of wastewater bacteria and A. brasilense was created on the surface of the beads, (b) the bead inhibited penetration of outside organisms into the beads, (c) the bead inhibited liberation of the immobilized microorganisms into the wastewater, and (d) permitted an uninterrupted reduction of ammonium and phosphorus from the wastewater. This study demonstrated that wastewater microbial populations are responsible for decreasing populations of biological agents used for wastewater treatment and immobilization in alginate beads provided a protective environment for these agents to carry out uninterrupted tertiary wastewater treatment.  相似文献   

14.
Ganoderma australe is a white-rot fungus that causes a selective wood biodelignification in some hardwoods found in the Chilean rainforest. Ceriporiopsis subvermispora is also a lignin-degrading fungus used in several biopulping studies. The enzymatic system responsible for lignin degradation in wood can also be used to degrade recalcitrant organic pollutants in liquid effluents. In this work, two strains of G. australe and one strain of C. subvermipora were comparatively evaluated in the biodegradation of ABTS and the dye Poly R-478 in liquid medium, and in the pretreatment of Eucalyptus globulus wood chips for further kraft biopulping. Laccase was detected in liquid and wood cultures with G. australe. Ceriporiopsis subvermispora produce laccase and manganese peroxidase when grown in liquid medium and only manganese peroxidase was detected during wood decay. ABTS was totally depleted by all strains after 8 days of incubation while Poly R-478 was degraded up to 40% with G. australe strains and up to 62% by C. subvermispora after 22 days of incubation. Eucalyptus globulus wood chips decayed for 15 days presented 1–6% of lignin loss and less than 2% of glucan loss. Kraft pulps with kappa number 15 were produced from biotreated wood chips with 2% less active alkali, with up to 3% increase in pulp yield and up to 20% less hexenuronic acids than pulps from undecayed control. Results showed that G. australe strains evaluated were not as efficient as C. subvermispora for dye and wood biodegradation, but could be used as a feasible alternative in biotechnological processes such as bioremediation and biopulping.  相似文献   

15.
Aerated lagoons are commonly used for domestic and industrial wastewater treatment due to their low cost and minimal need of operational requirements. However, little information is known regarding microbial communities that inhabit these ecosystems. In this study, a 16S-DGGE approach was used to estimate bacterial diversity and to monitor community changes in two aerated lagoons from a wastewater treatment plant receiving urban and industrial effluents. Pronounced shifts between bacterial communities collected in winter–spring and summer–autumn months were detected. Temperature, dissolved oxygen (DO) and pH were the variables that most influenced the bacterial communities. Phylogenetic affiliation of predominant members was assessed by the determination of the 16S rDNA sequence of correspondent bands. Affiliations to CytophagaFlexibacterBacteroides (CFB) group, Firmicutes, and β- and ε-proteobacteria were found.  相似文献   

16.
Summary Enterobacteria growing on wastewater from olive oil extraction were selected. Among this microflora, strains of Klebsiella oxytoca and Citrobacter diversus able to degrade simple monomeric aromatic compounds were isolated by enrichment culture of the effluent lacking simple sugars. In this preliminary investigation, the phenolic acids tested on solid and liquid media were gentisic, protocatechuic, p-hydroxybenzoic, benzoic, vanillic and ferulic. It was shown that the biodegradation of an aromatic acid is tightly dependent on both the type and the position of the radical substituted on the aromatic ring. Citrobacter was the most efficient strain in metabolizing ferulic acid in liquid medium at a concentration of 1.5 g/l. The substrate biodegradation yield achieved exceeded 86%.  相似文献   

17.
The coking process produces great volumes of wastewater contaminated with pollutants such as cyanides, sulfides and phenolics. Chemical and physical remediation of this wastewater removes the majority of these pollutants; however, these processes do not remove phenol and thiocyanate. The removal of these compounds has been effected during bioremediation with activated sludge containing a complex microbial community. In this investigation we acquired activated sludge from an industrial bioreactor capable of degrading phenol. The sludge was incubated in our laboratory and monitored for its ability to degrade phenol over a 48 h period. Multiple samples were taken across the time‐course and analysed by Fourier transform infrared (FT‐IR) spectroscopy. FT‐IR was used as a whole‐organism fingerprinting approach to monitor biochemical changes in the bacterial cells during the degradation of phenol. We also investigated the ability of the activated sludge to degrade phenol following extended periods (2–131 days) of storage in the absence of phenol. A reduction was observed in the ability of the microbial community to degrade phenol and this was accompanied by a detectable biochemical change in the FT‐IR fingerprint related to cellular phenotype of the microbial community. In the absence of phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these communities to degrade this substrate. Actively degrading communities showed an additional new band in their FT‐IR spectra that could be attributed to phenol degradation products from the ortho‐ and meta‐cleavage of the aromatic ring. This study demonstrates that FT‐IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities.  相似文献   

18.
Dinoseb (2-sec-butyl-4,6-dinitrophenol) has been a widely used herbicide that persists in some contaminated soils, and has been found in groundwaters, causing health and environmental hazards. Persistence in some soils may stem from a lack of dinoseb-degrading organisms. We established a chemostat environment that was strongly selective for aerobic (liquid phase) and anaerobic (sediment phase) bacteria able to degrade dinoseb. The chemostat yielded five taxonomically diverse aerobic isolates that could transform dinoseb to reduced products under microaerophilic or denitrifying conditions, but these organisms were unable to degrade the entire dinoseb molecule, and the transformed products formed multimeric material. The chemostat also yielded an anaerobic consortium of bacteria that could completely degrade dinoseb to acetate and CO2 when the Eh of the medium was less than-200 mV. The consortium contained at least three morphologically different bacterial species. HPLC analysis indicated that dinoseb was degraded sequentially via several as yet unidentified products. Degradation of these intermediates was inhibited by addition of bromoethane sulfonic acid. GC-MS analysis of metabolites in culture medium suggested that regiospecific attacks occurred non-sequentially on both the nitro groups and the side-chain of dinoseb. The consortium was also able to degrade 4,6-dinitro-o-cresol, 3,5-dinitrobenzoic acid, 2,4-dinitrotoluene, and 2,6-dinitrotoluene via a similar series of intermediate products. The consortium was not able to degrade 2,4-dinitrophenol. To our knowledge, this is the first report of strictly anaerobic biodegradation of an aromatic compound containing a multicarbon, saturated hydrocarbon side chain.Abbreviations BESA bromoethane sulfonic acid - RAMM reduced anaerobic mineral medium  相似文献   

19.
In previous studies, a new microbial strain ALA2 was isolated which produced many new products from linoleic acid [Gardner H.W., Hou C.T., Weisleder D. and Brown W. 2000. Lipids 35: 1055–1060; Hou C.T. 1998. 12,13,17-Trihydroxy-9(Z)-Octodecenoic acid and derivatives and microbial isolate for production of the acid. US Patent No. 5, 852, 196]. Strain ALA2 was preliminary identified as Clavibacter sp. based on its physiological and fatty acid profiles. To determine if strain ALA2 is the optimal strain for industrial applications, other related strains were screened for their abilities to convert linoleic acids. Two strains from Clavibacter and 20 type strains from the phylogenetically related genus Microbacterium were studied. Surprisingly, all of these strains tested showed very little or no activity in converting linoleic acid. On reexamination of the identification of strain ALA2, the sequence of the 16S ribosomal RNA gene of ALA2 was found to be 99% identical to that of Bacillus megaterium and the strain was also found to have 76.3% DNA homology to the B. megaterium type strain. Therefore, strain ALA2 is now reclassified as B. megaterium. Screening of 56 strains of B megaterium strains showed that many of them were able to produce reasonable amounts of hydroxyl fatty acids from linoleic acid, although strain ALA2 possessed the greatest activity.  相似文献   

20.
Three strains of Clostridium sp., 14 (VKM B-2201), 42 (VKM B-2202), and 21 (VKM B-2279), two methanogens, Methanobacterium formicicum MH (VKM B-2198) and Methanosarcina mazei MM (VKM B-2199), and one sulfate-reducing bacterium, Desulfovibrio sp. SR1 (VKM B-2200), were isolated in pure cultures from an anaerobic microbial community capable of degrading p-toluene sulfonate. Strain 14 was able to degrade p-toluene sulfonate in the presence of yeast extract and bactotryptone and, like strain 42, to utilize p-toluene sulfonate as the sole sulfur source with the production of toluene. p-Toluene sulfonate stimulated the growth of Ms. mazei MM on acetate. The sulfate-reducing strain Desulfovibrio sp. SR1 utilized p-toluene sulfonate as an electron acceptor. The putative scheme of p-toluene sulfonate degradation by the anaerobic microbial community is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号