首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Hepatic fibrosis is a dynamic process which ultimately leads to cirrhosis in almost patients with chronic hepatic injury. However, progressive fibrosis is a reversible scarring response. Activation of hepatic stellate cells (HSCs) is the prevailing process during hepatic fibrosis. Osthole is an active component majorly contained in the fruit of Cnidium monnieri (L.) Cusson. This present study investigated the therapeutic effects of osthole on rat liver fibrosis and HSC activation.

Results

We established the thioacetamide (TAA)-model of Sprague–Dawley (SD) rats to induce hepatic fibrosis. Rats were divided into three groups: control, TAA, and TAA + osthole (10 mg/kg). In vivo, osthole significantly reduced liver injury by diminishing levels of plasma AST and ALT, improving histological architecture, decreasing collagen and α-SMA accumulation, and improving hepatic fibrosis scores. Additionally, osthole reduced the expression of fibrosis-related genes significantly. Osthole also suppressed the production of fibrosis-related cytokines and chemokines. Moreover, nuclear translocation of p65 was significantly suppressed in osthole-treated liver. Osthole also ameliorated TAA-induced injury through reducing cellular oxidation. Osthole showed inhibitory effects in inflammation-related genes and chemokines production as well. In vitro, we assessed osthole effects in activated HSCs (HSC-T6 and LX-2). Osthole attenuated TGF-β1-induced migration and invasion in HSCs. Furthermore, osthole decreased TNF-α-triggered NF-κB activities significantly. Besides, osthole alleviated TGF-β1- or ET-1-induced HSCs contractility.

Conclusions

Our study demonstrated that osthole improved TAA-caused liver injury, fibrogenesis and inflammation in rats. In addition, osthole suppressed HSCs activation in vitro significantly.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0168-5) contains supplementary material, which is available to authorized users.  相似文献   

2.
Proline and hepatic lipogenesis   总被引:1,自引:0,他引:1  
The effects of proline on lipogenesis in isolated rat hepatocytes were determined and compared with those of lactate, an established lipogenic precursor. Proline or lactate plus pyruvate increased lipogenesis (measured with 3H2O) in hepatocytes from fed rats depleted of glycogen in vitro and in hepatocytes from starved rats. Lactate plus pyruvate but not proline increased lipogenesis in hepatocytes from starved rats. ( - )-Hydroxycitrate, an inhibitor of ATP-citrate lyase, partially inhibited incorporation into saponifiable fatty acid of 3H from 3H2O and 14C from [U-14C]lactate with hepatocytes from fed rats. Incorporation of 14C from [U-14C]proline was completely inhibited. Similar complete inhibition of incorporation of 14C from [U-14C]proline by ( - )-hydroxycitrate was observed with glycogen-depleted hepatocytes or hepatocytes from starved rats. Inhibition of phosphoenolpyruvate carboxykinase by 3-mercaptopicolinate did not inhibit the incorporation into saponifiable fatty acid of 3H from 3H2O or 14C from [U-14C]proline or [U-14C]lactate. Both 3-mercaptopicolinate and ( - )-hydroxycitrate increased lipogenesis (measured with 3H2O) in the absence or presence of lactate or proline with hepatocytes from starved rats. The results are discussed with reference to the roles of phosphoenolpyruvate carboxykinase, mitochondrial citrate efflux, ATP-citrate lyase and acetyl-CoA carboxylase in proline- or lactate-stimulated lipogenesis.  相似文献   

3.
4.
5.
6.
After a brief introduction to oxidative stress, the discovery of F(2)-isoprostanes as specific and reliable markers of oxidative stress is described. Isoprostanes are also agonists of important biological effects. Since a relation between oxidative stress and collagen hyperproduction has been previously suggested and since lipid peroxidation products have been proposed as possible mediators of liver fibrosis, we investigated whether collagen synthesis is induced by F(2)-isoprostanes the most proximal products of lipid peroxidation. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma isoprostanes were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of alpha-smooth muscle-alpha actin) and then treated with F(2)-isoprostanes in the concentration range found in the in vivo studies (10(-9)-10(-8)M), a striking increase in DNA synthesis, in cell proliferation and in collagen synthesis was observed. Moreover, F(2)-isoprostanes increased the production of transforming growth factor-beta1 by U937 cells, assumed as a model of Kupffer cells or liver macrophages. The data suggest the possibility that F(2)-isoprostanes generated by lipid peroxidation in hepatocytes mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.  相似文献   

7.
8.
法尼醇X受体(farnesoid X receptor,FXR)是核受体超家族的重要成员,以作为胆汁酸受体被大家所熟知.除了调节胆汁酸的合成和转运,FXR在调控葡萄糖代谢、甘油三酯代谢、炎症、凝血等方面也发挥重要作用.肝纤维化是慢性肝脏疾病发展成肝硬化的共同途径,终末期肝纤维化将导致肝硬化、肝衰竭,甚至危及生命.肝星状...  相似文献   

9.
Excessive deposition of fat in the liver (hepatic steatosis) is frequently accompanied by hepatic insulin resistance. Whether this correlation is due to a causal relationship between the conditions has been the subject of considerable debate, and the literature abounds with conflicting data and theories. Here we provide a perspective by defining the problem and its challenges, analyzing the possible causative relationships, and drawing some conclusions.  相似文献   

10.
11.
酒精滥用是一个重大的公共健康问题。酒精通过刺激脂肪酸合成,抑制脂肪酸的氧化导致肝脏脂质积累,进而诱发肝细胞病变,导致脂肪肝的病发。从转录调控脂质代谢的改变,异常甲硫氨酸代谢对内质网应激反应的作用等方面概述酒精与脂质代谢的相互调控机制,并阐述了这些调控机制之间的内在联系以及酒精如何影响肝脏脂质代谢,从而导致脂肪肝形成的最新相关研究进展。  相似文献   

12.
13.
Selenium and hepatic microsomal hemoproteins   总被引:3,自引:0,他引:3  
The microsomal share of liver homogenate 75Se after injection of a tracer dose of 75SeO32? was three times greater in rats fed a selenium-deficient diet than in rats fed a selenium-adequate diet. Basal levels of microsomal cytochromes P-450 and b5 were unaffected by selenium deficiency. However, induction of these cytochromes by phenobarbital was markedly inpaired in selenium-deficient rats, whereas liver weight increase and NADPH cytochrome c reductase induction were not impaired. These data indicate that selenium is essential for phenobarbital induction of microsomal hemoproteins.  相似文献   

14.
General anesthesia and hepatic circulation   总被引:5,自引:0,他引:5  
This article describes hepatic circulatory disturbances associated with anesthesia and surgical intervention. The material is presented in three parts: part 1 describes the effects of general anesthetics on the hepatic circulation; part 2 deals with different factors related to surgical procedures and anesthesia; and part 3 analyzes the role of hepatic circulatory disturbances and hepatic oxygen deprivation in anesthesia-induced hepatotoxicity. The analysis of available data suggests that general anesthesia affects the splanchnic and hepatic circulation in various directions and to different degrees. The majority of anesthetics decreases portal blood flow in association with a decrease in cardiac output. However, hepatic arterial blood flow can be preserved, decreased, or increased. The increase in hepatic arterial blood flow, when it occurs, is usually not enough to compensate for a decrease in portal blood flow and therefore total hepatic blood flow is usually decreased during anesthesia. This decrease in total hepatic blood flow has certain pharmacokinetic implications, namely a decrease in clearance of endogenous and exogenous substances with a high hepatic extraction ratio. On the other hand, a reduction in the hepatic oxygen supply might play a certain role in liver dysfunction occurring perioperatively. Surgical procedures-preparations combined with anesthesia have a very complex effect on the splanchnic and hepatic circulation. Within this complex, the surgical procedure-preparation plays the main role in developing circulatory disturbances, while anesthesia plays only a modifying role. Hepatic oxygen deprivation may play an important role in anesthesia-induced hepatotoxicity in different experimental models.  相似文献   

15.
16.
The equilibrium pressure obtained during simultaneous occlusion of hepatic vascular inflow and outflow was taken as the reference estimate of hepatic vascular distending pressure (P(hd)). P(hd) at baseline was 1.1 +/- 0.2 (mean +/- SE) mmHg higher than hepatic vein pressure (P(hv)) and 0.7 +/- 0.3 mmHg lower than portal vein pressure (P(pv)). Norepinephrine (NE) infusion increased P(hd) by 1. 5 +/- 0.5 mmHg and P(pv) by 3.7 +/- 0.6 mmHg but did not significantly increase P(hv). Hepatic lobar vein pressure (P(hlv)) measured by a micromanometer tipped 2-Fr catheter closely resembled P(hd) both at baseline and during NE-infusion. Dynamic pressure-volume (PV) curves were constructed from continuous measurements of P(hv) and hepatic blood volume increases (estimated by sonomicrometry) during brief occlusions of hepatic vascular outflow and compared with static PV curves constructed from P(hd) determinations at five different hepatic volumes. Estimates of hepatic vascular compliance and changes in unstressed blood volume from the two methods were in close agreement with hepatic compliance averaging 32 +/- 2 ml. mmHg(-1). kg liver(-1). NE infusion reduced unstressed blood volume by 110 +/- 38 ml/kg liver but did not alter compliance. In conclusion, P(hlv) reflects hepatic distending pressure, and the construction of dynamic PV curves is a fast and valid method for assessing hepatic compliance and changes in unstressed blood volume.  相似文献   

17.
The hepatic circulation is unique in that high volumes of low pressure blood flow are supplied through a dual venous and arterial circulation. This vascular supply is modulated both by the gastrointestinal vascular bed and an intrahepatic microcirculation. This complex vascular system is influenced by pathologic processes within the liver. Alterations in the hepatic circulation reflect hepatic metabolic adaptation and injury. It seems reasonable to assume that in some circumstances hepatic circulatory alterations are inappropriate, exaggerated or inadequate and contribute to the initiation or perpetuation of hepatic injury. This paper attempts to focus on evidence derived from studies of the normal and abnormal hepatic circulation that provide insights into hepatic circulatory responses and their role in the initiation and perpetuation of hepatic injury. A possible relationship of these vascular changes to pathologic processes within the liver is proposed. Ultimately, precise measurement and understanding of hepatic vasculature changes may allow appropriate intervention to offset injury or stimulate maximum effective repair.  相似文献   

18.
19.
Acetaminophen, a widely prescribed analgesic that causes fulminant hepatic necrosis in overdosed humans, produced varying degrees of hepatotoxixity in mice, rats, hamsters, guinea pigs and rabbits. The severity of hepatic injury paralleled the rate of activation of acetaminophen by hepatic microsomal enzymes to a potent arylating agent. The severity of hepatic damage in various species also correlated directly with the rate of hepatic glutathione depletion after acetaminophen. These findings support the hypothesis that the electrophilic arylating agent formed from acetaminophen invibo is preferentially detoxified by conjugation with glutathione and that arylation of hepatic macromolecules occurs only when glutathione availability is exceeded. Since N-hydroxylation of another N-acetylarylamine (2-acetylaminofluorene) occurs to a much greater extent in the species that are susceptible to acetaminophen-induced hepatic necrosis, the data also are consistent with the hypothesis that the toxic metabolite of acetaminophen results from N-hydroxylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号