首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA microarrays were used to investigate the expression profile of yeast genes in response to ethanol. Up to 3.1% of the genes encoded in the yeast genome were up-regulated by at least a factor of three after 30 min ethanol stress (7% v/v). Concomitantly, 3.2% of the genes were down-regulated by a factor of three. Of the genes up-regulated in response to ethanol 49.4% belong to the environmental stress response and 14.2% belong to the stress gene family. Our data show that in addition to the previously identified ethanol-induced genes, a very large number of genes involved in ionic homeostasis, heat protection, trehalose synthesis and antioxidant defence also respond to ethanol stress. It appears that a large number of the up-regulated genes are involved in energy metabolism. Thus, 'management' of the energy pool (especially ATP) seems to constitute an ethanol stress response and to involve different mechanisms.  相似文献   

2.
为探究大海马(Hippocampus kuda Bleeker)幼体在高盐、低盐胁迫条件下的基因表达水平的变化规律,对实验条件下的大海马幼体的肝脏样品进行了转录组测序。对照组(CK, 25‰)、高盐(HS-test, 31‰)和低盐(LS-test, 17‰)胁迫组共获得71794个单基因簇(Unigenes), N50为1780 bp,平均长度为820.71 bp。高盐胁迫组与对照组比较,共获得2740个差异表达基因(DEGs),其中495个DEGs上调, 2245个DEGs下调;与对照组相比,低盐胁迫组共获得3715个DEGs,其中1854个DEGs上调, 1861个DEGs下调。高/低盐胁迫组DEGs经KEGG数据库富集发现,高/低盐度胁迫均能导致大海马幼体体内氨基酸代谢、免疫代谢、能量和脂肪酸代谢相关基因受到影响。其中,低盐胁迫时能量代谢和氨基酸代谢的相关基因显著上调,高盐胁迫时脂肪酸代谢的相关基因显著下调,而高/低盐胁迫时免疫代谢的相关基因都显著上调。从经过盐度胁迫的大海马幼体的肝脏转录组中分别筛选到免疫相关基因Gst、Hsp70、Hsp90、Sod、Bcl-2、Gadd45...  相似文献   

3.
4.
5.
6.
Soil salinity and alkalinity are common constraints to crop productivity in low rainfall regions of the world. However, the physiological difference of plant response to these two stresses was short of deep investigation. This study has identified a set of differentially expressed proteins of tomato root exploring to NaCl and NaHCO3 stress by iTRAQ (isobaric tags for relative and absolute quantitation) assay. A total of 313 proteins responsive to NaCl and NaHCO3 were observed. Among these proteins, 70 and 114 proteins were up-regulated by salt and alkali stress, respectively. While down-regulated proteins were 80 in salt treatment and 83 in alkali treatment. Only 39 up-regulated proteins and 30 down-regulated proteins were shared by salt and alkali stresses. The majority of the down-regulated proteins accounted for metabolism and energy conversion, and the up-regulated proteins were involved in signaling or transport. Compared with salt stress, alkali stress down-regulated proteins related with the respiratory metabolism, fatty acid oxidative metabolism and nitrogenous metabolism of tomato roots, and up-regulated protein with the reactive oxygen species (ROS) scavenging and ion transport. This study provides a novel insight into tomato roots response to salt and alkali stress at a large translation level.  相似文献   

7.
8.
9.
Heat shock protein 90 (HSP90) is a highly conserved and multi-functional molecular chaperone that plays an essential role in both cellular metabolism and stress response. Here, we report the cloning of the HSP90 homologue in Crassostrea hongkongensis (ChHSP90) through SSH in combination with RACE from cDNA of haemocytes. The full-length cDNA of ChHSP90 is 2459 bp in length, consisting of a 3', 5'-untranslated region (UTR) and an open reading frame of 2169 bp encoding 722 amino acids. The identity analysis of the amino acid sequence of HSP90 revealed that ChHSP90 is highly conserved. Distribution of ChHSP90 mRNA in gonad, heart, adductor muscle, mantle, gill, digestive gland, and haemocytes suggested that ChHSP90 is ubiquitously expressed. The mRNA levels of ChHSP90 under salinity and bacterial challenges were analyzed by real-time PCR. Under hypo-osmotic treatment, ChHSP90 mRNA in gonad, heart and haemocytes were significantly up-regulated on day 2 and onwards; while in gill, digestive gland and adductor muscle it was significantly down-regulated; the expression in mantle was decreased significantly on day 2 and 3 (P < 0.01), and then up-regulated on day 4 (P < 0.05). Under hyper-osmotic treatment, the mRNA level in gonad, heart, adductor muscle was increased on day 2 and onwards; in gill, it was firstly increased, and then gradually decreased, reaching a minimum on day 3. On day 4, the expression level in gill recovered to pre-treatment level; in mantle and digestive gland, the expression levels were decreased, reaching to the minimum on day 3. During Vibrio alginolyticus challenge, the mRNA level of ChHSP90 increased 3-fold at 4 h post-infection, returned to its pre-challenge level at 6 h post-infection, then was further up-regulated from 8 to 36 h post-infection. These experiments demonstrate that ChHSP90 mRNA is constitutively expressed in various tissues and apparently inducible in haemocytes under salinity and bacterial challenges, suggesting its important role in response to both osmotic stress and bacterial invasion.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
As the life cycle of ayu spans river, brackish and seawater environments, it would be a suitable fish model for studying the responses to salinity changes in aquatic animals. We investigated the effect of salinity on trunk kidney proteome in ayu (Plecoglossus altivelis) using two-dimensional gel electrophoresis and mass spectrometry. The proteins involved in the process of energy metabolism, biosynthesis, DNA methylation and cell differentiation were mainly affected, and 10 significantly changed proteins were identified. Our result showed that isocitrate dehydrogenase (ICD), pyruvate dehydrogenase (E1), O-glycosyl hydrolase, mitochondrial precursor of ATP synthase subunit beta, mitochondrial ferrtin (MtF), retinol binding protein (RBP) were down-regulated, whereas aldehyde dehydrogenase, cytokeratin 1, S-adenosylhomocysteine hydrolase, Cys-Met metabolism PLP-dependent enzyme were up-regulated when ayu transferred from freshwater to brackish water. Partial coding sequences of E1, ICD, MtF and RBP genes were determined, and the effects of salinity on their mRNA expression in ayu trunk kidney were tested by real-time PCR subsequently. Their possible direct or indirect roles in the adaptation of ayu to salinity are discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号