首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Escherichia coli glutamine synthetase is inactivated by subtilisin. Protection against inactivation is afforded by glutamine and ammonium ions. One large fragment (Mr = 35,000) is identified by sodium dodecyl sulfate-gel electrophoresis and carries adenylylation site. Smaller quantities of two other fragments (Mr = 17,000 and 15,000, respectively) are als observed oo observed on the gel. tthe nicked protein remains dodecameric, as evidenced by electrophoresis and centrifugation. It has retained the binding properties toward ADP and Ci-bacron blue and undergoes conformation changes upon binding, as does the intact protein. It is recognized by the antiserum raised against the native enzyme. The nicked protein also remains an excellent substrate of E. coli adenylyltransferase.  相似文献   

2.
3.
4.
The activity of rat liver microsomal glutathione transferase is increased by limited tryptic proteolysis; the membrane-bound and purified forms of the enzyme are activated about 5- and 10-fold respectively. The cleavage sites that correlate with this activation were determined by amino acid sequence analysis to be located after Lys-4 and Lys-41. Differences in the relative extent of cleavage at these two sites did not consistently affect the degree of activation. Thus the data support the conclusion that cleavage at either site results in activation. The trypsin-activated enzyme was compared with the form activated with N-ethylmaleimide, which modifies Cys-49. These two differently activated forms were found to have similar kinetic parameters, which differ from those of the unactivated enzyme. The relatedness of the two types of activation is also demonstrated by the observation that microsomal glutathione transferase fully activated by N-ethylmaleimide is virtually resistant to further activation by trypsin. This is the case despite the fact that the N-ethylmaleimide-activated enzyme is much more susceptible to trypsin cleavage at Lys-41 than is the untreated enzyme. The latter observation indicates that activation with N-ethylmaleimide is accompanied by a conformational change involving Lys-41.  相似文献   

5.
Purified Pseudomonas cytochrome oxidase has been associated with asolectin liposomes by two different methods. Firstly, the enzyme was attached to liposomic membranes by adding it to a cholate-phospholipid dispersion and subsequently dialyzing the detergent out of suspension. In the second case the enzyme was adsorbed on the preformed liposomes when added to them after the dialysis. A stimulation of the cytochrome oxidase activity approximately twenty-fold was observed by the first method. In contrast, the activation was absent in the second type of preparation, indicating that interaction between the enzyme and phospholipids is very different in the two types of vesicles. The cholate-dialysis method for reconstitution of protein-phospholipid vesicles seems to lead to rather heterogenous preparations. These can be further fractionated, not only according to their size but also to the protein/phospholipid ratio, by gel chromatography.  相似文献   

6.
An active derivative (mol. wt. 48,000) of Aspergillus sp. K-27 glucoamylase (mol. wt. 76,000) was obtained by limited proteolysis with subtilisin. The amino acid sequences of native and modified enzymes at the N-termini were Ala-Gly-Gly-Thr-Leu-Asp and Ala-Val-Leu, respectively. The proteolysis greatly decreased the affinity of the enzyme for amylopectin and glycogen, but not for oligosaccharides. It also reduced the ability of the enzyme to degrade raw starch, abolished the ability of the enzyme to adsorb onto starch granules, and eliminated the synergistic action of the enzyme in the hydrolysis of starch granules with alpha-amylase. These findings imply that the enzyme has a specific affinity site for polysaccharide substrates besides the catalytic site, i.e., a starch-binding site, and that the former is removed by proteolysis. The extent of the reduction in the activity for raw starches caused by the modification varied with the starch source, as the modified enzyme digested raw potato starch better than either raw corn or sweet potato starches. A new method for evaluation of the raw starch-digesting activity of glucoamylase is described.  相似文献   

7.
8.
9.
The limited proteolysis of rabbit skeletal muscle phosphorylase a was undertaken with subtilisin BPN' immobilized to Sepharose 4B. The effect of substrates, activators and inhibitors of phosphorylase a was investigated by monitoring the changes in phosphorylase activity in the SDS gel electrophoretic pattern and in the 32P-content of 32P-labeled phosphorylase a. Phosphorylase a loses its activity upon subtilisin treatment. All ligands tested protect phosphorylase a activity against subtilisin action, probably by inducing structural changes in the tower loop of the enzyme. Glucose-6-P significantly accelerates [32P]peptide release from phosphorylase a through altering the structure of the N-terminal tail segment. The two subunits of dimeric phosphorylase a are held together by strong interactions--deduced from the correlation of the rate of proteolysis and the disappearance of catalytic activity.  相似文献   

10.
A proton-pumping heme aa3-type cytochrome oxidase purified from the thermophilic bacterium PS3 was treated with trypsin, thermolysin, chymotrypsin, subtilisin, or pronase. The cleavage of the oxidase subunits and the effects of their cleavage on the oxidase activity and proton-pumping in reconstituted vesicles were studied. Trypsin and thermolysin cleaved some of the oxidase subunits without affecting the proton-pumping, but subtilisin and pronase cleaved all the subunits resulting in partial decrease in both activities. Chymotrypsin had an intermediate effect. Subunit II of this enzyme contains heme c which is also cleaved by proteases.  相似文献   

11.
12.
The magnetic properties of the haem groups of Pseudomonas cytochrome oxidase and its cyanide-bound derivatives were studied in both the oxidized and reduced states by means of m.c.d. (magnetic circular dichroism) at low temperatures. In addition, the oxidized forms of the enzyme were also investigated by e.p.r. (electron-paramagnetic-resonance) spectroscopy, and a parallel study, using both e.p.r. and m.c.d., was made on Pseudomonas cytochrome c-551 to aid spectral assignments. For ascorbate-reduced Pseudomonas cytochrome oxidase, the temperature-independence of those features in the m.c.d. spectrum corresponding to the haem c, and the temperature-dependence of those signals corresponding to the haem d1, showed the former to be low-spin and the latter to be high-spin (s = 2). However, addition of cyanide to the reduced enzyme gave a form of the protein that was completely low-spin. The e.p.r. and m.c.d. sectra of oxidized Pseudomonas cytochrome oxidase and its cyanide derivative were consistent with the haem c and d1 components being low-spin in both cases. Pseudomonas cytochrome c-551 was found to be low-spin in both its oxidized and reduced redox states.  相似文献   

13.
Pseudomonas cytochrome oxidase (EC 1.9.3.2) is composed of two subunits. Each subunit has a molecular weight of approx. 63000 and, according to the iron determination, contains two hemes. Cytochrome oxidase was subjected to various dissociation procedures to determine the stability of the dimeric structure. Progressive succinylation of 14 to 68% of the lysine residues of the enzyme increases the amount of the protein appearing in the subunit form (S20,W approximately 4 S) from 18 to 92%. At a high degree of succinylation a component with a sedimentation coefficient of approx. 2 S appears. The subunits with sedimentation coefficients of approx. 4 S and 2 S are also formed when the pH is below 4 or above 11. The same molecular weight (63000) was found for these two components in sodium dodecylsulphate electrophoresis. No dissociation of cytochrome oxidase was observed in salt solutions like 3 M NaC1 and 1 M Na2SO4, or in 6 M urea. The slight decrease in the sedimentation coefficients in NaC1 solutions is partly explained by preferential hydratation of the protein.  相似文献   

14.
15.
Alginate is believed to be a major virulence factor in the pathogenicity of Pseudomonas aeruginosa in the lungs of patients suffering from cystic fibrosis. Guanosine diphospho-D-mannose dehydrogenase (GDPmannose dehydrogenase, EC 1.1.1.132) is a key enzyme in the alginate biosynthetic pathway which catalyzes the oxidation of guanosine diphospho-D-mannose (GDP-D-mannose) to GDP-D-mannuronic acid. In this paper, we report the structural analysis of GMD by limited proteolysis using three different proteases, trypsin, submaxillary Arg-C protease, and chymotrypsin. Treatment of GMD with these proteases indicated that the amino-terminal part of this enzyme may fold into a structural domain with an apparent molecular mass of 25-26 kDa. Multiple proteolytic cleavage sites existed at the carboxyl-terminal end of this domain, indicating that this segment may represent an exposed region of the protein. Initial proteolysis also generated a carboxyl-terminal fragment with an apparent molecular mass of 16-17 kDa which was further digested into smaller fragments by trypsin and chymotrypsin. The proteolytic cleavage sites were localized by partial amino-terminal sequencing of the peptide fragments. Arg-295 was identified as the initial cleavage site for trypsin and Tyr-278 for chymotrypsin. Catalytic activity of GMD was totally abolished by the initial cleavage. However, binding of the substrate, GDP-D-mannose, increased stability toward proteolysis and inhibited the loss of enzyme activity. GMP and GDP (guanosine 5'-mono- and diphosphates) also blocked the initial cleavage, but NAD and mannose showed no effect. These results suggest that binding of the guanosine moiety at the catalytic site of GMD may induce a conformational change that reduces the accessibility of the cleavage sites to proteases. Binding of [14C]GDP-D-mannose to the amino-terminal domain was not affected by the removal of the carboxyl-terminal 16-kDa fragment. Furthermore, photoaffinity labeling of GMD with [32P]arylazido-beta-alanine-NAD followed by proteolysis demonstrated that the radioactive NAD was covalently linked to the amino-terminal domain. These observations imply that the amino-terminal domain (25-26 kDa) contains both the substrate and cofactor binding sites. However, the carboxyl-terminal fragment (16-17 kDa) may possess amino acid residues essential for catalysis. Thus, proteolysis had little effect on substrate binding, but totally eliminated catalysis. These biochemical data are in complete agreement with amino acid sequence analysis for the existence of substrate and cofactor sites of GMD. A linear peptide map of GMD was constructed for future structure/functional studies.  相似文献   

16.
Pseudomonas cytochrome oxidase (EC 1.9.3.2) was studied by negative staining in the electron microscope. The best resolution was obtained with uranyl oxalate (pH 6.0) as negative stain. Electron micrographs confirm the idea of the dimeric structure of the enzyme. A rough model of cytochrome oxidase was constructed based on different projections of the molecule seen in the electron micrographs. In this model the subunits are identical and sterically equivalent.  相似文献   

17.
Limited proteolysis experiments can be successfully used to probe conformational features of proteins. In a number of studies it has been demonstrated that the sites of limited proteolysis along the polypeptide chain of a protein are characterized by enhanced backbone flexibility, implying that proteolytic probes can pinpoint the sites of local unfolding in a protein chain. Limited proteolysis was used to analyze the partly folded (molten globule) states of several proteins, such as apomyoglobin, alpha-lactalbumin, calcium-binding lysozymes, cytochrome c and human growth hormone. These proteins were induced to acquire the molten globule state under specific solvent conditions, such as low pH. In general, the protein conformational features deduced from limited proteolysis experiments nicely correlate with those deriving from other biophysical and spectroscopic techniques. Limited proteolysis is also most useful for isolating protein fragments that can fold autonomously and thus behave as protein domains. Moreover, the technique can be used to identify and prepare protein fragments that are able to associate into a native-like and often functional protein complex. Overall, our results underscore the utility of the limited proteolysis approach for unravelling molecular features of proteins and appear to prompt its systematic use as a simple first step in the elucidation of structure-dynamics-function relationships of a novel and rare protein, especially if available in minute amounts.  相似文献   

18.
Beef-heart cytochrome c oxidase lacking endogenous lipids can be prepared by cholate-mediated exchange with dimyristoylphosphatidylcholine (Powell, G. L., Knowles, P. F. and Marsh, D. (1985) Biochim. Biophys. Acta 816, 191-194). These preparations retained practically no endogenous cardiolipin (less than 0.19 mol cardiolipin per mol of oxidase) but in Tween 80 they retained unaltered electron transport activity. Resupplementation of the dimyristoylphosphatidylcholine-substituted cytochrome oxidase with cardiolipin and cardiolipin analogues with different numbers of acyl chains or with a methylated headgroup enhanced the activity of the reconstituted enzyme to an extent dependent on the structure of the cardiolipin derivative. The Eadie-Hofstee plot showed biphasic kinetic behavior for all reconstituted preparations, even those completely lacking cardiolipin. This biphasic substrate dependence of the kinetics was simulated using the model of Brzezinski, P. and Malmstr?m, B. G. (Proc. Natl. Acad. Sci. USA 83 (1986) 4282-4286), which implicates two interconverting enzyme conformations in the proton transport step. The activation of cytochrome c oxidase by the cardiolipin analogues could be explained in terms of an electrostatic enhancement of the surface concentrations of both cytochrome c and protons, and a facilitated interconversion between the two enzyme conformations.  相似文献   

19.
The reduction of cytochrome c551 oxidase from Pseudomonas aeruginosa by Cr2+ ions was followed in the stopped-flow apparatus at a number of wavelengths. The c-haem reduction proceeded in a biphasic fashion with second-order rate constants of 2.6 X 10(5)M-1-S-1 and 4.8 X 10(4)M-1-S-1 at 25 degrees C, whereas the biphasic reduction of the d1-haem appeared to be independent of reductant concentration with rate constants of approx. 1.0S-1 and 0.25S-1 respectively. The kinetically determined difference spectra (reduced minus oxidized) for the c- and d1-haems are presented.  相似文献   

20.
Stopped-flow kinetics were made of the reaction between ascorbate-reduced Pseudomonas cytochrome oxidase and potassium ferricyanide under both N2 and CO atmospheres. Under N2 three kinetic processes were observed, two being dependent on ferricyanide concentration, with second-order rate constants of 9.6 X 10(4)M-1.s-1 and 1.5 X 10(4)M-1.s-1, whereas the other was concentration-independent, with a first-order rate constant of 0.17 +/- 0.03s-1. Measurements of their kinetic difference spectra have allowed the fastest and second-fastest phases of the reaction to be assigned to direct bimolecular reactions of ferricyanide with the haem c and haem d, moieties of the enzyme respectively. Under CO, the second-order rate constant for the reaction of the haem c was, at 1.3 X 10(5)M-1.s-1, slightly enhanced over the rate in a N2 atmosphere, but the reaction velocity of the haem d1 component was greatly decreased, being apparently limited to that of the rates of CO dissociation from the molecule (0.15s-1 and 0.03s-1). The results are compared with those obtained during a previous study of the reaction of reduced Pseudomonas cytochrome oxidase with oxidized azurin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号