首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jasmonic acid signaling modulates ozone-induced hypersensitive cell death   总被引:15,自引:0,他引:15  
Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.  相似文献   

2.
Ozone-tolerant Bel B and ozone-sensitive Bel W3 tobacco cultivars were subjected to acute ozone fumigation (200 p.p.b. for 3 h) and the subcellular localization of H2O2 was then studied. H2O2 accumulated on the cell walls and plasma membrane of both cultivars but the accumulation pattern differed greatly. H2O2 production was high in both cultivars immediately after fumigation, but, in the tolerant Bel B cultivar, after 7 h was only detected in some spongy cells adjacent to epidermal cells. Instead, in the sensitive Bel W3 cultivar, accumulation was still abundant in the cell walls of palisade, spongy and epidermal cells at this time. Significant changes in apoplastic ascorbate pool were noted in both cultivars in the first hours after fumigation. As the reduced ascorbate content remained unchanged, the marked increase in total ascorbate must have originated from the striking increase in dehydroascorbate, particularly in the ozone-sensitive Bel W3. Exposure of plants to ozone resulted in a marked transient increase in both free and conjugated salicylic acid (SA) as well as an increase in the activity of benzoic acid 2-hydroxylase which catalyses SA biosynthesis. SA induction differed greatly in the two cultivars, in that: (1) SA accumulation was far greater in the ozone-sensitive Bel W3 cv. and (2) the maximum SA peak was delayed in Bel W3 and observed only 7 h after fumigation ended. These results suggest that a high SA content, as documented in the ozone-sensitive Bel W3 cultivar, could trigger the production of ROS with subsequent SA-mediated cell-death.  相似文献   

3.
Nitric oxide (NO) is involved together with reactive oxygen species (ROS) in the activation of various stress responses in plants. We have used ozone (O3) as a tool to elicit ROS-activated stress responses, and to activate cell death in plant leaves. Here, we have investigated the roles and interactions of ROS and NO in the induction and regulation of O3-induced cell death. Treatment with O3 induced a rapid accumulation of NO, which started from guard cells, spread to adjacent epidermal cells and eventually moved to mesophyll cells. During the later time points, NO production coincided with the formation of hypersensitive response (HR)-like lesions. The NO donor sodium nitroprusside (SNP) and O3 individually induced a large set of defence-related genes; however, in a combined treatment SNP attenuated the O3 induction of salicylic acid (SA) biosynthesis and other defence-related genes. Consistent with this, SNP treatment also decreased O3-induced SA accumulation. The O3-sensitive mutant rcd1 was found to be an NO overproducer; in contrast, Atnoa1/rif1 ( Arabidopsis nitric oxide associated 1/resistant to inhibition by FSM1 ), a mutant with decreased production of NO, was also O3 sensitive. This, together with experiments combining O3 and the NO donor SNP suggested that NO can modify signalling, hormone biosynthesis and gene expression in plants during O3 exposure, and that a functional NO production is needed for a proper O3 response. In summary, NO is an important signalling molecule in the response to O3.  相似文献   

4.
Ozone is the main photochemical oxidant that causes leaf damage in many plant species, and can thereby significantly decrease the productivity of crops and forests. When ozone is incorporated into plants, it produces reactive oxygen species (ROS), such as superoxide radicals and hydrogen peroxide. These ROS induce the synthesis of several plant hormones, such as ethylene, salicylic acid, and jasmonic acid. These phytohormones are required for plant growth, development, and defense responses, and regulate the extent of leaf injury in ozone-fumigated plants. Recently, responses to ozone have been studied using genetically modified plants and mutants with altered hormone levels or signaling pathways. These researches have clarified the roles of phytohormones and the complexity of their signaling pathways. The present paper reviews the biosynthesis of the phytohormones ethylene, salicylic acid, and jasmonic acid, their roles in plant responses to ozone, and multiple interactions between these phytohormones in ozone-exposed plants.Key words: cross-talk, ethylene, jasmonic acid, ozone, phytohormones, programmed cell death, salicylic acid, signaling pathways  相似文献   

5.
6.
7.
The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin‐related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunction. In plants with acd2 and ACD2 + sectors, ACD2 functions cell autonomously, implicating a pro‐death ACD2 substrate as being cell non‐autonomous in promoting the spread of PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely to be mobile within cells. Two different light‐dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active: the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together, the data suggest that ACD2 localizes dynamically during infection to protect cells from pro‐death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria.  相似文献   

8.
Hydrogen peroxide activates cell death and defense gene expression in birch   总被引:14,自引:0,他引:14  
The function of hydrogen peroxide (H(2)O(2)) as a signal molecule regulating gene expression and cell death induced by external stresses was studied in birch (Betula pendula). Ozone (O(3)), Pseudomonas syringae pv syringae (Pss), and wounding all induced cell death of various extents in birch leaves. This was temporally preceded and closely accompanied by H(2)O(2) accumulation at, and especially surrounding, the lesion sites. O(3) and Pss, along with an artificial H(2)O(2) producing system glucose (Glc)/Glc oxidase, elicited elevated mRNA levels corresponding to genes encoding reactive oxygen species detoxifying enzymes, Pal, Ypr10, and mitochondrial phosphate translocator 1. In addition to the regulation of gene expression, Glc/Glc oxidase also induced endogenous H(2)O(2) production in birch leaves, accompanied by cell death that resembled O(3) and Pss damage. Wound-induced gene expression differed from that induced by O(3) and Pss. Thus, it appears that at least two separate defense pathways can be activated in birch leaves by stress factors, even though the early H(2)O(2) accumulation response is common among them all.  相似文献   

9.
Ethylene (ET) and jasmonic acid (JA) have opposite effects on ozone (O(3))-induced spreading cell death; ET stimulates, and is required for the spreading cell death, whereas JA protects tissues. We studied the underlying molecular mechanisms with the O(3)-sensitive, JA-insensitive jasmonate resistant 1 (jar1), and the O(3)-tolerant, ET-insensitive ethylene insensitive 2 (ein2) mutants. Blocking ET perception pharmacologically with norbornadiene (NBD) in jar1, or ET signaling genetically in the jar1 ein2 double mutant prevented the spread of cell death. This suggests that EIN2 function is epistatic to JAR1, and that the JAR1-dependent JA pathway halts oxidative cell death by directly inhibiting ET signaling. JAR1-dependent suppression of the ET pathway was apparent also as increased EIN2-dependent gene expression and ET hypersensitivity of jar1. Physiological experiments suggested that the target of JA is upstream of Constitutive Triple Response 1 (CTR1), but downstream of ET biosynthesis. Gene expression analysis of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated and O(3)-exposed ein2 and jar1 revealed reciprocal antagonism: the EIN2-mediated suppression of the JA pathway. The results imply that the O(3)-induced spreading cell death is stimulated by early, rapid accumulation of ET, which can suppress the protecting function of JA thereby allowing cell death to proceed. Extended spreading cell death induces late accumulation of JA, which inhibits the propagation of cell death through inhibition of the ET pathway.  相似文献   

10.
11.
X Ma  W Li  H Yu  Y Yang  M Li  L Xue  T Xu 《Cell death and differentiation》2014,21(3):407-415
The TNF–JNK pathway is a highly conserved signaling pathway that regulates a wide spectrum of biological processes including cell death and migration. To further delineate this pathway, we carried out a genetic screen for dominant modifiers of the cell death phenotype triggered by ectopic expression of Eiger (Egr), the Drosophila TNF ortholog. Here we show that Bendless (Ben), an E2 ubiquitin-conjugating enzyme, modulates Egr-induced JNK activation and cell death through dTRAF2. Furthermore, Ben physically interacts with dTRAF2 and regulates Egr-induced dTRAF2 polyubiquitination. Finally, Ben is required for JNK-dependent tumor progression, cell migration, oxidative stress resistance and longevity. Our results indicate that Ben constitutes an essential component of the evolutionarily conserved TNF–JNK pathway that modulates cell death and invasion, tumor progression, stress response and lifespan in metazoans.  相似文献   

12.
Buer CS  Wasteneys GO  Masle J 《Plant physiology》2003,132(2):1085-1096
When stimulated to bend downward by being held at 45 degrees off vertical but unable to penetrate into agar-based media, Arabidopsis roots develop waving and looping growth patterns. Here, we demonstrate that ethylene modulates these responses. We determined that agar-containing plates sealed with low-porosity film generate abiotic ethylene concentrations of 0.1 to 0.3 microL L(-1), whereas in plates wrapped with porous tape, ethylene remains at trace levels. We demonstrate that exogenous ethylene at concentrations as low as a few nanoliters per liter modulates root waving, root growth direction, and looping but through partly different mechanisms. Nutrients and Suc modify the effects of ethylene on root waving. Thus, ethylene had little effect on temporal wave frequency when nutrients were omitted but reduced it significantly on nutrient-supplemented agar. Suc masked the ethylene response. Ethylene consistently suppressed the normal tendency for roots of Landsberg erecta to skew to the right as they grow against hard-agar surfaces and also generated righthanded petiole twisting. Furthermore, ethylene suppressed root looping, a gravity-dependent growth response that was enhanced by high nutrient and Suc availability. Our work demonstrates that cell file twisting is not essential for root waving or skewing to occur. Differential flank growth accounted for both the extreme root waving on zero-nutrient plates and for root skewing. Root twisting was nutrient-dependent and was thus strongly associated with the looping response. The possible role of auxin transport in these responses and the involvement of circadian rhythms are discussed.  相似文献   

13.
Studies in murine models of cancer as well as in cancer patients have demonstrated that the immune response to cancer is often compromised. This paradigm is viewed as one of the major mechanisms of tumor escape. Many therapies focus on employing the professional antigen presenting dendritic cells (DC) as a strategy to overcome immune inhibition in cancer patients. Death receptor 6 (DR6) is an orphan member of the tumor necrosis factor receptor superfamily (TNFRSF21). It is overexpressed on many tumor cells and DR6−/− mice display altered immunity. We investigated whether DR6 plays a role in tumorigenesis by negatively affecting the generation of anti-tumor activity. We show that DR6 is uniquely cleaved from the cell surface of tumor cell lines by the membrane-associated matrix metalloproteinase (MMP)-14, which is often overexpressed on tumor cells and is associated with malignancy. We also demonstrate that >50% of monocytes differentiating into DC die when the extracellular domain of DR6 is present. In addition, DR6 affects the cell surface phenotype of the resulting immature DC and changes their cytokine production upon stimulation with LPS/IFN-γ. The effects of DR6 are mostly amended when these immature DC are matured with IL-1β/TNF-α, as measured by cell surface phenotype and their ability to present antigen. These results implicate MMP-14 and DR6 as a mechanism tumor cells can employ to actively escape detection by the immune system by affecting the generation of antigen presenting cells.  相似文献   

14.
15.
Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death   总被引:9,自引:0,他引:9       下载免费PDF全文
Yao N  Greenberg JT 《The Plant cell》2006,18(2):397-411
The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae-induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events.  相似文献   

16.
The voltage-dependent anion channel-1 modulates apoptotic cell death   总被引:5,自引:0,他引:5  
The role of the voltage-dependent anion channel (VDAC) in cell death was investigated using the expression of native and mutated murine VDAC1 in U-937 cells and VDAC inhibitors. Glutamate 72 in VDAC1, shown previously to bind dicyclohexylcarbodiimide (DCCD), which inhibits hexokinase isoform I (HK-I) binding to mitochondria, was mutated to glutamine. Binding of HK-I to mitochondria expressing E72Q-mVDAC1, as compared to native VDAC1, was decreased by approximately 70% and rendered insensitive to DCCD. HK-I and ruthenium red (RuR) reduced the VDAC1 conductance but not that of E72Q-mVDAC1. Overexpression of native or E72Q-mVDAC1 in U-937 cells induced apoptotic cell death (80%). RuR or overexpression of HK-I prevented this apoptosis in cells expressing native but not E72Q-mVDAC1. Thus, a single amino-acid mutation in VDAC prevented HK-I- or RuR-mediated protection against apoptosis, suggesting the direct VDAC regulation of the mitochondria-mediated apoptotic pathway and that the protective effects of RuR and HK-I rely on their binding to VDAC.  相似文献   

17.
18.
Mechanisms accounting for the cellular entry of calcium that mediates cellular proliferation and apoptosis have been obscure. Previously we reported selective augmentation of type 3 inositol (1,4,5) trisphosphate receptors (IP(3)R3) in lymphocytes undergoing programmed cell death, which was prevented by antisense constructs to IP(3)R3. We now report increases in mRNA and protein levels for IP(3)R3 associated with cell death in several apoptotic paradigms in diverse tissues. Elevations of IP(3)R3 occur during developmental apoptosis in early postnatal cerebellar granule cells, dorsal root ganglia, embryonic hair follicles, and intestinal villi. Neurotoxic damage elicited by the glutamate agonist kainate is also associated with IP(3)R3 augmentation. In chick dorsal root ganglia neurons undergoing apoptosis due to deprivation of nerve growth factor, levels of IP(3)R3 are selectively increased and cell death is selectively prevented by antisense oligonucleotides to IP(3)R3. Thus, IP(3)R3 appears to participate actively in cell death in a diversity of tissues.  相似文献   

19.
Transgenic ethylene-insensitive tobacco (Tetr) plants spontaneously develop symptoms of wilting and stem necrosis when grown in nonautoclaved soil. Fusarium oxysporum, F. solani, Thielaviopsis basicola, Rhizopus stolonifer, and two Pythium spp. were isolated from these diseased Tetr plants and demonstrated to be causal agents of the disease symptoms. Pathogenicity of the two Pythium isolates and four additional Pythium spp. was tested on ethylene-insensitive tobacco and Arabidopsis seedlings. In both plant species, ethylene insensitivity enhanced susceptibility to the Pythium spp., as evidenced by both a higher disease index and a higher percentage of diseased plants. Based on the use of a DNA probe specific for Pythium spp., Tetr plants exhibited more pathogen growth in stem and leaf tissue than similarly diseased control plants. These results demonstrate that ethylene signaling is required for resistance to different root pathogens and contributes to limiting growth and systemic spread of the pathogen.  相似文献   

20.
Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号