首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The three enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa strain PAO were induced strongly (50- to 100-fold) by a shift from aerobic growth conditions to very low oxygen tension. Arginine in the culture medium was not essential for induction, but increased the maximum enzyme levels twofold. The induction of the three enzymes arginine deiminase (EC 3.5.3.6), catabolic ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3) appeared to be coordinate. Catabolic ornithine carbamoyltransferase was studied in most detail. Nitrate and nitrite, which can replace oxygen as terminal electron acceptors in P. aeruginosa, partially prevented enzyme induction by low oxygen tension in the wild-type strain, but not in nar (nitrate reductase-negative) mutants. Glucose was found to exert catabolite repression of the deiminase pathway. Generally, conditions of stress, such as depletion of the carbon and energy source or the phosphate source, resulted in induced synthesis of catabolic ornithine carbamoyltransferase. The induction of the deiminase pathway is thought to mobilize intra- and extracellular reserves of arginine, which is used as a source of adenosine 5'-triphosphate in the absence of respiration.  相似文献   

2.
3.
D-Arginine dehydrogenase activity was discovered in Pseudomonas aeruginosa. This enzyme was inducible by its substrate, D-arginine, as well as by its product, 2-ketoarginine, but not by L-arginine. The enzyme activity was measured in vitro, in the presence of artificial electron acceptore (phenazine methosulphate and iodonitrotetrazolium chloride). 2-ketoarginine was catabolized further to 4-guanidinobutyraldehyde, 4-guanidinobutyrate and 4-aminobutyrate. Two enzymes involved, 4-guanidinobutyraldehyde dehydrogenase and guanidinobutyrase, were inducible by 2-ketoarginine; the latter enzyme was also strongly induced by 4-guanidinobutyrate. An arginine racemase activity was detected by an invivo test. E-Arginine had the potential to be catabolized via the D-arginine dehydrogenase pathway and, after racemization, via the three L-arginine catabolic pathyways previously demonstrated in P. aeruginosa. In mutants blocked in the L-arginine succinyltransferase pathway, but no in the wild-type, L-arginine was channelled partially into the D-arginine dehydrogenase pathway. Mutations in the kauB locus abolished growth of P. aeruginosa on 2-ketoarginine, agmatine and putrescine, and led to loss of 4-guanidinobutyraldehyde dehydrogenase and 4-aminobutyaldehyde dehydrogenase activites. Thus, these two activites appear to be due to one enzyme in P. aeruginosa. The kauB locus was mapped on the chromosome between lysA and argB and was not linked to known genes involved in the three L-arginine catabolic pathways. The existence of four arginine catabolic pathways illustrates the metabolic versatility of P. aeruginosa.  相似文献   

4.
Regulation of the mandelate pathway in Pseudomonas aeruginosa   总被引:2,自引:2,他引:2       下载免费PDF全文
The pathway of mandelate metabolism in Pseudomonas aeruginosa is composed of the following steps: l(+)-mandelate --> benzoylformate --> benzaldehyde --> benzoate. These three steps are unique to mandelate oxidation; the benzoate formed is further metabolized via the beta-ketoadipate pathway. The first enzyme, l(+)-mandelate dehydrogenase, is induced by its substrate. The second and third enzymes, benzoylformate decarboxylase and benzaldehyde dehydrogenase, are both induced by benzoylformate. The same benzaldehyde dehydrogenase, or one very similar to it, is also induced by beta-ketoadipate, an intermediate in the subsequent metabolism of benzoate. This dehydrogenase may also be induced by adipate or a metabolite of adipate. These conclusions have been drawn from the physiological and genetic properties of wild-type P. aeruginosa strains and from the study of mutants lacking the second and third enzyme activities.  相似文献   

5.
We report here the purification and characterization of phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase, a bifunctional enzyme (PMI-GMP) which catalyzes both the phosphomannose isomerase (PMI) and guanosine 5'-diphospho-D-mannose pyrophosphorylase (GMP) reactions of the Pseudomonas aeruginosa alginate biosynthetic pathway. The PMI and GMP activities co-eluted in the same protein peak through successive fractionation on hydrophobic interaction, ion exchange, and gel filtration chromatography. The purified enzyme migrated as a 56,000 molecular weight protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the native protein migrated as a monomer of 54,000 molecular weight upon gel filtration chromatography. The apparent Km for D-mannose 6-phosphate was 3.03 mM, and the Vmax was 830 nmol/min/mg of enzyme. For the GMP forward reaction, apparent Km values of 20.5 microM and 29.5 microM for D-mannose 1-phosphate and GTP, respectively, were obtained from double reciprocal plots. The GMP forward reaction Vmax (5,680 nmol/min/mg of enzyme) was comparable to the reverse reaction Vmax (5,170 nmol/min/mg of enzyme), and the apparent Km for GDP-D-mannose was determined to be 14.2 microM. Both reactions required Mg2+ activation, but the PMI reaction rate was 4-fold higher with Co2+ as the activator. PMI (but not GMP) activity was sensitive to dithiothreitol, indicating the involvement of disulfide bonds to form a protein structure capable of PMI activity. DNA sequencing of a cloned mutant algA gene from P. aeruginosa revealed that a point mutation at nucleotide 961 greatly decreased the levels of both PMI and GMP in a crude extract.  相似文献   

6.
7.
Bacterial peptidoglycan is the cell wall component responsible for maintaining cell integrity against osmotic pressure. Biosynthesis of the cytoplasmic precursor UDP-N-acetylmuramyl pentapeptide is catalyzed by the Mur enzymes. Genomic analysis of the three regions encoding Mur proteins was achieved. We have cloned and over-expressed the murA, -B, -D, -E and -F genes of Pseudomonas aeruginosa in pET expression system by adding a His-Tag to the C-termini of the proteins. Mur proteins were purified to homogeneity by a single chromatographic step on affinity nickel columns. Protein identities were verified through N-terminal sequencing. Enzyme activity was proved by the identification of the pathway's final product.  相似文献   

8.
【背景】属于H-NS家族的MvaT转录因子参与了铜绿假单胞菌的许多重要代谢过程,如吩嗪合成代谢,但其调控方式仍不十分明确。【目的】确定转录调控因子MvaT是否直接调控铜绿假单胞菌的吩嗪合成过程,即该蛋白是否可以直接结合2个吩嗪-1-羧酸合成基因簇(phzA1G1和phzA2G2)与3个分支转化基因(phzH、phzS和phzM)的上游启动子区域。【方法】以铜绿假单胞菌SJTD-1和其mvaT基因敲除突变株SJTD-1(ΔmvaT)为研究对象,检测其在不同培养基条件下吩嗪化合物的合成量差异。通过体外异源表达与亲和纯化,获得重组蛋白MvaT。利用凝胶阻滞实验,确定MvaT重组蛋白对5个吩嗪代谢基因簇/基因上游启动子的结合情况。【结果】mvaT基因敲除突变株SJTD-1(ΔmvaT)的吩嗪产量较野生型显著提升。MvaT重组蛋白被有效表达与纯化,体外凝胶阻滞实验结果显示,该重组蛋白可与phzA1G1、phzA2G2、phzM、phzS和phzH的上游启动子区域均发生特异性结合。其中,重组蛋白MvaT与phzA1G1和phzA2G2的结合区域位于其上游启动子的200 bp以内,而该蛋白与phzM、phzS和phzH的结合区域则位于其上游启动子的100 bp以内。【结论】MvaT蛋白通过直接结合吩嗪合成代谢基因的上游启动子区域来直接调控假单胞菌的吩嗪类化合物合成。  相似文献   

9.
Two classes of regulatory mutations affecting the synthesis of the carbamoylphosphate synthetase belonging to the arginine biosynthetic pathway have been selected in Saccharomyces cerevisiae. Together, they delineate a negative type of control. The cpaI0 mutations, closely linked with one of the two genes coding for the enzyme and cis dominant, meet properties of operator mutations. The cpaR mutations can be interpreted as mutations impairing the formation of an active repressor of carbamoylphosphate synthetase which is distinct from the one acting on the synthesis of the other enzymes of the arginine biosynthetic pathway.  相似文献   

10.
11.
Eight enzymes involved in the conversion of acetylglutamate to arginine in Neurospora crassa were studied. The data indicate that of three enzymes early in the sequence, only the first, acetylglutamate kinase, is a nonorganellar enzyme. The next two, N-acetyl-gamma-glutamyl-phosphate reductase and acetylornithine aminotransferase, are in the mitochondrion, which was previously shown to contain the subsequent enzymes: acetylornithine-glutamate acetyltransferase, ornithine carbamyltransferase, and carbamyl-phosphate synthetase A (arginine specific). The last two enzymes of the pathway, argininosuccinate synthetase and argininosuccinate lyase, were previously shown to be cytosolic. All enzymes but one have low amplitudes or repression. Their levels respond little to arginine excess and are about twofold elevated (threefold for ornithine carbamyltransferase) as a result of arginine limitation in the arg-12-8 strain. No restriction of the incorporation of mitochondrial enzymes into mitochondria could be detected when the levels of these enzymes were elevated. Two enzymes, acetylglutamate kinase and carbamyl-phosphate synthetase A, which initiate the synthesis of the ornithine and guanidino moieties of arginine, respectively, show the lowest specific activities in crude extract. These enzymes display special regulatroy features. Acetylglutamate kinase, which has a typically low amplitude of repression, is subject to feedback inhibition. Carbamyl-phosphate synthetase A is wholly insensitive to arginine or citrulline in vitro or in vivo, but displays a very large amplitude of repression (about 60-fold). It is unique in that it can be almost completely repressed by growth of mycelia in excess arginine. These data suggest that mitochondrial localization may be incompatible with a mechanism of feedback inhibition by a cytosolic effector, arginine. Further, they suggest that the high repressibility of carbamyl-phosphate synthetase A compensates for its feedback insensitivity.  相似文献   

12.
Pseudomonas aeruginosa strains PA7 and Pa5196 glycosylate their type IVa pilins with α1,5-linked D-arabinofuranose (d-Araf), a rare sugar configuration identical to that found in cell wall polymers of the Corynebacterineae. Despite this chemical identity, the pathway for biosynthesis of α1,5-D-Araf in Gram-negative bacteria is unknown. Bioinformatics analyses pointed to a cluster of seven P. aeruginosa genes, including homologues of the Mycobacterium tuberculosis genes Rv3806c, Rv3790, and Rv3791, required for synthesis of a polyprenyl-linked d-ribose precursor and its epimerization to D-Araf. Pa5196 mutants lacking the orthologues of those genes had non-arabinosylated pilins, poor twitching motility, and significantly fewer surface pili than the wild type even in a retraction-deficient (pilT) background. The Pa5196 pilus system assembled heterologous non-glycosylated pilins efficiently, demonstrating that it does not require post-translationally modified subunits. Together the data suggest that pilins of group IV strains need to be glycosylated for productive subunit-subunit interactions. A recombinant P. aeruginosa PAO1 strain co-expressing the genes for d-Araf biosynthesis, the pilin modification enzyme TfpW, and the acceptor PilA(IV) produced arabinosylated pili, confirming that the Pa5196 genes identified are both necessary and sufficient. A P. aeruginosa epimerase knock-out could be complemented with the corresponding Mycobacterium smegmatis gene, demonstrating conservation between the systems of the Corynebacterineae and Pseudomonas. This work describes a novel Gram-negative pathway for biosynthesis of d-Araf, a key therapeutic target in Corynebacterineae.  相似文献   

13.
Pseudomonas aeruginosa PAO was able to grow in the absence of exogenous terminal electron acceptors, provided that the medium contained 30 to 40 mM L-arginine and 0.4% yeast extract. Under strictly anaerobic conditions (O2 at less than 1 ppm), growth could be measured as an increase in protein and proceeded in a non-exponential way; arginine was largely converted to ornithine but not entirely consumed at the end of growth. In the GasPak anaerobic jar (Becton Dickinson and Co.), the wild-type strain PAO1 grew on arginine-yeast extract medium in 3 to 5 days; mutants could be isolated that were unable to grow under these conditions. All mutants (except one) were defective in at least one of the three enzymes of the arginine deiminase pathway (arcA, arcB, and arcC mutants) or in a novel function that might be involved in anaerobic arginine uptake (arcD mutants). The mutations arcA (arginine deiminase), arcB (catabolic ornithine carbamoyltransferase), arcC (carbamate kinase), and arcD were highly cotransducible and mapped in the 17-min chromosome region. Some mutations in the arc cluster led to low, noninducible levels of all three arginine deiminase pathway enzymes and thus may affect control elements required for induction of the postulated arc operon. Two fluorescent pseudomonads (P. putida and P. fluorescens) and P. mendocina, as well as one PAO mutant, possessed an inducible arginine deiminase pathway and yet were unable to grow fermentatively on arginine. The ability to use arginine-derived ATP for growth may provide P. aeruginosa with a selective advantage when oxygen and nitrate are scarce.  相似文献   

14.
The formation of the arginine deiminase pathway enzymes in Streptococcus faecalis ATCC 11700 was investigated. The addition of arginine to growing cells resulted in the coinduction of arginine diminase (EC 3.5.3.6), ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3). Growth on glucose-arginine or on glucose-fumarate-arginine produced a decrease in the specific activity of the arginine fermentation system. Aeration had a weak repressing effect on the arginine deiminase pathway enzymes in cells growing on arginine as the only added substrate. By contrast, depending on the growth phase, a marked repression of the pathway by oxygen was observed in cells growing on glucose-arginine. We hypothesize that, in S. faecalis, the ATP pool is an important signal in the regulation of the arginine deiminase pathway. Mutants unable to utilize arginine as an energy source, isolated from the wild type, exhibited four distinct phenotypes. In group I the three enzymes of the arginine deiminase pathway were present and probably affected in the arginine uptake system. Group II mutants had no detectable arginine deiminase, whereas group III mutants had low levels of ornithine carbamoyltransferase. Group IV mutants were defective for all three enzymes of the pathway.  相似文献   

15.
16.
Rhamnolipids are extracellular biosurfactants and virulence factors secreted by the opportunistic human pathogen Pseudomonas aeruginosa that are required for swarming motility. The rhlG gene is essential for rhamnolipid formation, and the RhlG enzyme is thought to divert fatty acid synthesis intermediates into the rhamnolipid biosynthetic pathway based on its similarity to FabG, the beta-ketoacyl-acyl carrier protein (ACP) reductase of type II fatty acid synthesis. Crystallographic analysis reveals that the overall structures of the RhlG.NADP+ and FabG.NADP+ complexes are indeed similar, but there are key differences related to function. RhlG does not undergo the conformational changes upon NADP(H) binding at the active site that in FabG are the structural basis of negative allostery. Also, the acyl chain-binding pocket of RhlG is narrow and rigid compared with the larger, flexible substrate-binding subdomain in FabG. Finally, RhlG lacks a positively charged/hydrophobic surface feature adjacent to the active site that is found on enzymes like FabG that recognize the ACP of fatty acid synthesis. RhlG catalyzed the NADPH-dependent reduction of beta-ketodecanoyl-ACP to beta-d-hydroxydecanoyl-ACP. However, the enzyme was 2000-fold less active than FabG in carrying out the same reaction. These structural and biochemical studies establish RhlG as a NADPH-dependent beta-ketoacyl reductase of the SDR protein superfamily and further suggest that the ACP of fatty acid synthesis does not carry the substrates for RhlG.  相似文献   

17.
Mapping of the arginine deiminase gene in Pseudomonas aeruginosa   总被引:8,自引:5,他引:3       下载免费PDF全文
A mutant of Pseudomonas aeruginosa PAO lacking arginine deiminase activity (arcA) was isolated by screening for a derivative of an arcB mutant (deficient in catabolic ornithine carbamoyltransferase) that did not excrete citrulline under conditions of limited aeration. The arcA mutation was highly cotransducible with arcB.  相似文献   

18.
19.
PhzD from Pseudomonas aeruginosa is an isochorismatase involved in phenazine biosynthesis. Phenazines are antimicrobial compounds that provide Pseudomonas with a competitive advantage in certain environments and may be partly responsible for the persistence of Pseudomonas infections. In vivo, PhzD catalyzes the hydrolysis of the vinyl ether functional group of 2-amino-2-deoxyisochorismate, yielding pyruvate and trans-2,3-dihydro-3-hydroxyanthranilic acid, which is then utilized in the phenazine biosynthetic pathway. PhzD also catalyzes hydrolysis of the related vinyl ethers isochorismate, chorismate, and 4-amino-4-deoxychorismate. Here we report the 1.5 A crystal structure of native PhzD, and the 1.6 A structure of the inactive D38A variant in complex with isochorismate. The structures reveal that isochorismate binds to the PhzD active site in a trans-diaxial conformation, and superposition of the structures indicates that the methylene pyruvyl carbon of isochorismate is adjacent to the side chain carboxylate of aspartate 38. The proximity of aspartate 38 to isochorismate and the complete loss of activity resulting from the conversion of aspartate 38 to alanine suggest a mechanism in which the carboxylate acts as a general acid to protonate the substrate, yielding a carbocation/oxocarbonium ion that is then rapidly hydrated to form a hemiketal intermediate, which then decomposes spontaneously to products. The structure of PhzD is remarkably similar to other structures from a subfamily of alpha/beta-hydrolase enzymes that includes pyrazinamidase and N-carbamoylsarcosine amidohydrolase. However, PhzD catalyzes unrelated chemistry and lacks a nucleophilic cysteine found in its close structural relatives. The vinyl ether hydrolysis catalyzed by PhzD represents yet another example of the catalytic diversity seen in the alpha/beta-hydrolase family, whose members are also known to hydrolyze amides, phosphates, phosphonates, epoxides, and C-X bonds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号