首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • Self‐fertilisation that is delayed until after opportunities for outcrossing have ceased has been argued to provide both the reproductive assurance benefits of selfing and the genetic advantages of outcrossing. In the Campanulaceae, presentation of pollen on stylar hairs and progressive stigma curvature have been hypothesised to facilitate delayed selfing, but experimental tests are lacking. Stigma curvature is common in Campanula, a genus largely characterised by self‐incompatibility, and therefore is unlikely to have initially evolved to promote self‐fertilisation. In derived self‐compatible species, however, stigma curvature might serve the secondary function of delayed selfing.
  • We investigated delayed selfing in Triodanis perfoliata, a self‐compatible relative of Campanula. Using floral manipulation experiments and pollen tube observations, we quantified the extent and timing of self‐pollination. Further, we hypothesised that, if stigma curvature provides the benefit of delayed selfing in Triodanis, selection should have favoured retention of self‐pollen through the loss of a stylar hair retraction mechanism.
  • Results of a stigma removal experiment indicated that autonomous selfing produces partial seed set, but only some selfing was delayed. Pollen tube observations and a flower senescence assay also supported the finding of partial delayed selfing. Scanning electron microscopy revealed that pollen‐collecting hairs retract during anthesis, which may limit the extent of delayed selfing.
  • Delayed selfing appeared to be only partially effective in T. perfoliata. The stylar hair retraction in this species would seem to contradict selection for selfing. We suggest that caution and rigour are needed in interpreting floral traits as adaptive mechanisms for delayed selfing.
  相似文献   

2.
  • The incredible pollination mechanisms displayed by orchid flowers has inspired biologists over the centuries. Based on the intriguing flower structures, the relationship among orchid species and their pollinators has been frequently regarded as very specialised.
  • Given that visits on flowers pollinated by oil‐collecting bees are regularly rare, and in Oncidiinae the flowers frequently attractexclusively species that act as effective pollinators, the comparative reproductive biology and pollinator specificity of two sympatric Gomesa (G. varicosa and G. montana; Oncidiinae) were analysedbased on records of floral morphology, production of floral rewards, pollinators and pollination mechanisms. Furthermore, experimental pollinations were carried out in order to examine the breeding systems.
  • The results have show that in the studied population, both Gomesa are visited by several bee species, but these orchids present a specific pollination system.Pollinaria are deposited on the head of Centridini (G. varicosa and G. montana) and Epicharitini (G. varicosa) bees when landed on the central callus of the labellumto collect lipoidal substances produced by glandular elaiophores on lateral lobes of the labellum. Both species are dependent on a biotic pollen vector to set fruits. Gomesamontana is completely self‐incompatible, while G. varicosa is partially self‐compatible.
  • Our results indicate that although the occurrence of self‐sterile species seems to be common in Oncidiinae, in partially self‐incompatible species, as is the case of G. varicosa, self‐compatibility has been considered as an important factor favouring reproductive assurance in populations with low visitation frequencies, despite occurrence of inbreeding depression.
  相似文献   

3.
  • Plant species that are effective colonisers of transient habitats are expected to have a capacity for uniparental reproduction and show flexibility in pollination systems. Such traits may enable populations to be established from a small number of founding individuals without these populations succumbing to reductions in fecundity arising from pollinator limitation.
  • We tested these predictions for Aloe thraskii (Xanthorrhoeaceae), a succulent treelet that colonises shifting coastal dunes and has both bird and bee pollinators. We performed hand‐pollination experiments, and selectively excluded bird visitors to determine differences in pollinator effectiveness. We measured pollinator visitation rates and fecundity in populations varying in their size, density and isolation distance.
  • Controlled hand‐pollinations revealed that unlike most other Aloe species, A. thraskii is self‐compatible and thus capable of uniparental reproduction. The species does however depend on pollinators and is visited by various bird species as well as by bees. Fruit and seed set are not affected by selective exclusion of birds, thus indicating that bees are effective pollinators. Bird visitation rates increased with increasing plant height and population size, while bee visitation rates increased with increasing population size and density. We found that seed set per flower was lower in large populations than in small populations.
  • These results suggest that establishment of populations of A. thraskii from a small number of individuals is unlikely to be limited by the fecundity of individual plants.
  相似文献   

4.
  • Floral nectar can affect the fitness of insect‐pollinated plants, through both attraction and manipulation of pollinators. Self‐incompatible insect‐pollinated plants receive more insect visits than their self‐compatible relatives, and the nectar of such species might face increased risk of infestation by pathogens carried by pollinators than self‐compatible plants. Proteins in nectar (nectarins) play an important role in protecting the nectar, but little is known regarding nectarins in self‐incompatible species.
  • The nectarins from a self‐incompatible and insect‐pollinated leguminous crop, Canavalia gladiata, were separated using two‐dimensional electrophoresis and analysed using mass spectrometry. The predominant nectarin gene was cloned and the gene expression pattern investigated using quantitative real‐time PCR. Chitinolytic activity in the nectar was tested with different substrates.
  • The C. gladiata nectar proteome only has one predominant nectarin, an acidic class III chitinase (CaChi3). The full‐length CaChi3 gene was cloned, coding for a protein of 298 amino acids with a predicted signal peptide. CaChi3 is very similar to members of the class III chitinase family, whose evolution is dominated by purifying selection. CaChi3 was expressed in both nectary and leaves. CaChi3 has thermostable chitinolytic activity according to glycol‐chitin zymography or a fluorogenic substratem but has no lysozyme activity.
  • Chitinase might be a critical protein component in nectar. The extremely simple nectar proteome in C. gladiata disproves the hypothesis that self‐incompatible species always have more complex nectar proteomes. Accessibility of nectar might be a significant determinant of the evolutionary pressure to develop nectar defence mechanisms.
  相似文献   

5.
Hermaphroditic plants can potentially self‐fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self‐progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self‐incompatible, with a low frequency of self‐compatible plants. However, a few populations have become fixed for self‐compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self‐incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding‐depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self‐incompatibility to produce selfed seed might leave residual effects of self‐incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata.  相似文献   

6.
Perennial vetch (Vicia unijuga) is a wild plant found in parts of East Asia and potentially valuable as a forage species for more extreme environments. Information on its reproductive system and pollination biology is needed for progress in domestication of the species. We characterized the reproductive system of perennial vetch as facultative xenogamy (i.e. it is largely cross‐pollinated by insects but is also self‐compatible and can self‐pollinate). There was no significant difference (P > 0.05) in the fruit set ratio between insect cross‐pollination and artificial cross‐pollination at the seed maturation stage, but natural self‐pollination was inefficient. In our study conducted on the Tibetan plateau, eight insect species (especially certain bumble bees) are identified as potential pollinators, and four other insect species belonging to the Lepidoptera and Diptera visited flowers but are unlikely to be pollinators. The flower visitation rate of wild bumble bees was 1.6–3.3 times higher than domestic honeybees, with Bombus lepidus having the highest visitation rate of 15.7 florets/min. The diurnal floret opening rhythm of perennial vetch was synchronized with diurnal activity of potential pollinators. Optimal pollination of perennial vetch would likely be achieved using wild bees, as they have behaviour characteristics and flower tripping ability necessary, and are present in sufficient numbers to be efficient pollinators of this crop. However, even with sufficiency of pollination, there remains a fundamental problem with low fruit set which requires further investigation from a plant biology perspective.  相似文献   

7.
  • Floral visitors differ in their efficacy as pollinators, and the impact of different pollinator species on pollen flow and plant reproduction has been frequently evaluated. In contrast, the impact of intraspecific behavioural changes on their efficacy as pollinators has seldom been quantified.
  • We studied a self‐incompatible shrub Palicourea rigida (Rubiaceae) and its hummingbird pollinators, which adjust their behaviour according to floral resource availability. Fluorescence microscopy was used to access pollen tube growth and incompatibility reaction in pistils after a single visit of territorial or intruder hummingbirds in two populations. To characterise the plant populations and possible differences in resource availability between areas we used a three‐term quadrat variance method to detect clusters of floral resources.
  • Within‐species variation in foraging behaviour, but not species identity, affected pollinator efficacy. Effectively, hummingbirds intruding into territories deposited more compatible pollen grains on P. rigida stigmas than territory holders in both study areas. Additionally, territory holders deposited more incompatible than compatible pollen grains.
  • Our results imply that intraspecific foraging behaviour variation has consequences for pollination success. Quantifying such variation and addressing the implications of intraspecific variability contribute to a better understanding of the dynamics and consequences of plant–pollinator interactions.
  相似文献   

8.
9.
  • Breeding systems of plants determine their reliance on pollinators and ability to produce seeds following self‐pollination. Self‐sterility, where ovules that are penetrated by self‐pollen tubes that do not develop into seeds, is usually considered to represent either a system of late‐acting self‐incompatibility or strong early inbreeding depression. Importantly, it can lead to impaired female function through ovule or seed discounting when stigmas receive mixtures of self and cross pollen, unless cross pollen is able to reach the ovary ahead of self pollen (‘prepotency’). Self‐sterility associated with ovule penetration by self‐pollen tubes appears to be widespread among the Amaryllidaceae.
  • We tested for self‐sterility in three Cyrtanthus species – C. contractus, C. ventricosus and C. mackenii – by means of controlled hand‐pollination experiments. To determine the growth rates and frequency of ovule penetration by self‐ versus cross‐pollen tubes, we used fluorescence microscopy to examine flowers of C. contractus harvested 24, 48 and 72 h after pollination, in conjunction with a novel method of processing these images digitally. To test the potential for ovule discounting (loss of cross‐fertilisation opportunities when ovules are disabled by self‐pollination), we pollinated flowers of C. contractus and C. mackenii with mixtures of self‐ and cross pollen.
  • We recorded full self‐sterility for C. contractus and C. ventricosus, and partial self‐sterility for C. mackenii. In C. contractus, we found no differences in the growth rates of self‐ and cross‐pollen tubes, nor in the proportions of ovules penetrated by self‐ and cross‐pollen tubes. In this species, seed set was depressed (relative to cross‐pollinated controls) when flowers received a mixture of self and cross pollen, but this was not the case for C. mackenii.
  • These results reveal variation in breeding systems among Cyrtanthus species and highlight the potential for gender conflict in self‐sterile species in which ovules are penetrated and disabled by pollen tubes from self pollen.
  相似文献   

10.
  • This study tested the hypothesis that self‐compatibility would be associated with floral traits that facilitate autonomous self‐pollination to ensure reproduction under low pollinator visitation. In a comparison of two pairs of Ipomoea species with contrasting breeding systems, we predicted that self‐compatible (SC) species would have smaller, less variable flowers, reduced herkogamy, lower pollinator visitation and higher reproductive success than their self‐incompatible (SI) congeners.
  • We studied sympatric species pairs, I. hederacea (SC)– I. mitchellae (SI) and I. purpurea (SC)–I. indica (SI), in Mexico, over two years. We quantified variation in floral traits and nectar production, documented pollinator visitation, and determined natural fruit and seed set. Hand‐pollination and bagging experiments were conducted to determine potential for autonomous self‐pollination and apomixis.
  • Self‐compatible Ipomoea species had smaller flowers and lower nectar production than SI species; however, floral variation and integration did not vary according to breeding system. Bees were primary pollinators of all species, but visitation rates were seven times lower in SC than SI species. SC species had a high capacity for autonomous self‐pollination due to reduced herkogamy at the highest anther levels. Self‐compatible species had two to six times higher fruit set than SI species.
  • Results generally support the hypothesis that self‐compatibility and autonomous self‐pollination ensure reproduction under low pollinator visitation. However, high variation in morphological traits of SC Ipomoea species suggests they maintain variation through outcrossing. Furthermore, reduced herkogamy was associated with high potential for autonomous self‐pollination, providing a reproductive advantage that possibly underlies transitions to self‐compatibility in Ipomoea.
  相似文献   

11.
  • Although common among orchids, pollination by perfume‐gathering male euglossine bees is quite rare in other Neotropical families. In Gesneriaceae, for example, it is reported in two genera only, Drymonia and Gloxinia. Flowers of G. perennis are known to emit perfume, thereby attracting male euglossine bees as pollinators. However, detailed reports on the pollination ecology, as well as on chemistry of floral perfume of individuals in natural populations, are still missing. In this study, we report on the pollination ecology of G. perennis, focusing on the ecological significance of its floral perfume.
  • In natural populations in Peru, we documented the floral biology and breeding system of G. perennis, as well as its interaction with flower visitors. We also characterised the chemical composition of floral perfume, as well as its timing of emission.
  • Gloxinia perennis is self‐compatible and natural pollination success is high. Spontaneous self‐pollination occurs as a ‘just in case strategy’ when pollinators are scarce. Perfume‐collecting males of Eulaema cingulata and Elmeriana were identified as pollinators. The perfume bouquet of G. perennis consists of 16 compounds. (E)‐Carvone epoxide (41%) and limonene (23%) are the major constituents. Perfume emission is higher at 09:00 h, matching the activity peak of Eulaema pollinators.
  • Flowers of G. perennis have evolved a mixed strategy to ensure pollination (i.e. self‐ and cross‐pollination), but cross‐pollination is favoured. The size and behaviour of Eulaema males enables only these bees to successfully cross‐pollinate G. perennis. Furthermore, G. perennis floral perfume traits (i.e. chemistry and timing of emission) have evolved to optimise the attraction of these bees.
  相似文献   

12.
  • Paspalum is a noteworthy grass genus due to the forage quality of most species, with approximately 330 species, and the high proportion of those that reproduce via apomixis. Harnessing apomictic reproduction and widening knowledge about the cytogenetic relationships among species are essential tools for plant breeding.
  • We conducted cytogenetic analyses of inter‐ and intraspecific hybridisations involving a sexual, colchicine‐induced autotetraploid plant of P. plicatulum Michx. and five indigenous apomictic tetraploid (2n = 40) species: P. compressifolium Swallen, P. lenticulare Kunth, two accessions of P. nicorae Parodi, P. rojasii Hack. and two accessions of P. plicatulum. Fertility of the hybrids was investigated and their reproductive system was analysed considering the relative embryo:endosperm DNA content from flow cytometry. Morphological, nomenclatural and taxonomic issues were also analysed.
  • Cytogenetic analysis suggested that all indigenous tetraploid accessions of five apomictic species are autotetraploid or segmental allotetraploid. If segmental allotetraploids, they probably originated through autoploidy followed by diploidisation processes. Autosyndetic male chromosome pairing observed in all hybrid families supported this assertion. Allosyndetic chromosome associations were also observed in all hybrid families. In the hybrids, the proportion of male parent chromosomes involved in allosyndesis per pollen mother cell varied from 5.5% to 35.0% and the maximum was between 25% and 60%. The apomictic condition of the indigenous male parents segregated in the hybrids.
  • These results confirm a strong association between autoploidy and apomixis in Paspalum, and the existence of cytogenetic relationships between different species of the Plicatula group. Allosyndetic chromosome pairing and seed fertility of the hybrids suggest the feasibility of gene transfer among species.
  相似文献   

13.
  • Information on the optimal conditions to promote the germination of Lamprocapnos spectabilis (L.) Fukuhara seeds is limited; consequently, this study was conducted to establish the requirements to break seed dormancy and promote germination.
  • The selected seeds had morphophysiological dormancy and had not begun embryo development. To study the dormancy breaking and embryo development processes, seeds were subjected to constant or changing temperature treatments during moist stratification.
  • High temperature and humidity resulted in vigorous embryo growth, with the longest embryos occurring after 1 month of incubation at 20 °C. At 4 °C, the seeds required incubation period of at least 3 months to germinate. Embryo growth and germination were higher with changing high and low temperatures than under a constant temperature, and changing temperatures also considerably changed the endogenous hormone levels, embryo development and germination. Bioactive gibberellin (GA) content was higher in seeds incubated at 20 °C for 1 month, then at 4 °C for 2 months. The content of endogenous abscisic acid in seeds subjected to the same treatment decreased by 97.6% compared with that of the untreated seeds.
  • Embryo growth and seed germination require changing high and low temperatures; however, exogenous GA3 could substitute for high temperatures, as it also causes accelerated germination. In this study, the seeds of L. spectabilis were identified as an intermediate simple type, a sub‐level of morphophysiologically dormant seeds.
  相似文献   

14.
  • Grasslands across the globe are undergoing expansive degradation due to human impacts and climate change. If restoration of degraded native grassland is to be achieved at the scale now required, cost‐effective means for seed‐based establishment of grass species is crucial. However, grass seeds present numerous challenges associated with handling and germination performance that must be overcome to improve the efficiency of seeding. Previous research has demonstrated that complete removal of the palea and lemma (husk) maximises germination performance, hence we investigated the effects of complete husk removal on seed handling and germination of four temperate Australian grass species.
  • Three techniques were tested to remove the husk – manual cleaning, flaming or acid digestion (the latter two followed by a manual cleaning step); these techniques were refined and adapted to the selected species, and germination responses were compared.
  • The complete removal of the husk improved seed handling and sowability for all species. Germination was improved in Microlaena stipoides by 19% and in Rytidosperma geniculatum by 11%. Of the husk removal methods tested, flaming was detrimental to seed germination and fatal for one species (R. geniculatum). Compared to manual cleaning, sulphuric acid improved the overall efficacy of the cleaning procedure and increased germination speed (T50) in Austrostipa scabra, Chloris truncata and M. stipoides, and improved final germination in R. geniculatum by 13%.
  • The seed processing methods developed and tested in the present study can be applied to grass species that present similar handling and germination performance impediments. These and other technological developments (seed coating and precision sowing) will facilitate more efficient grassland restoration at large scale.
  相似文献   

15.
  • Reproductive success of a plant species is largely influenced by the outcome of mating pattern in a population. It is believed that a significantly larger proportion of animal‐pollinated plants have evolved a mixed‐mating strategy, the extent of which may vary among species. It is thus pertinent to investigate the key contributors to mating success, especially to identify the reproductive constraints in depauperate populations of threatened plant species.
  • We examined the contribution of floral architecture, pollination mechanism and breeding system on the extent of outcrossing rate in a near‐threatened tree species, Wrightia tomentosa. The breeding system was ascertained from controlled pollination experiments. In order to determine outcrossing rate, 60 open‐pollinated progeny were analysed using an AFLP markers.
  • Although the trees are self‐compatible, herkogamy and compartmentalisation of pollen and nectar in different chambers of the floral tube effectively prevent spontaneous autogamy. Pollination is achieved through specialised interaction with moths. Differential foraging behaviour of settling moths and hawkmoths leads to different proportions of geitonogamous and xenogamous pollen on the stigma. However, most open‐pollinated progeny were the result of xenogamy (outcrossing rate, tm = 0.68).
  • The study shows that floral contrivances and pollination system have a strong influence on mating pattern. The differential foraging behaviour of the pollinators causes deposition of a mixture of self‐ and cross‐pollen to produce a mixed brood. Inbreeding depression and geitonogamy appear to play a significant role in sustaining mixed mating in this species.
  相似文献   

16.
  • Species with vast production of dust‐like windborne seeds, such as orchids, should not be limited by seed dispersal. This paradigm, however, does not fit recent studies showing that many sites suitable for orchids are unoccupied and most seeds land close to their maternal plant. To explore this issue, we studied seed dispersal and gene flow of two forest orchid species, Epipactis atrorubens and Cephalanthera rubra, growing in a fragmented landscape of forested limestone hills in southwest Bohemia, Czech Republic.
  • We used a combination of seed trapping and plant genotyping methods (microsatellite DNA markers) to quantify short‐ and long‐distance dispersal, respectively. In addition, seed production of both species was estimated.
  • We found that most seeds landed very close to maternal plants (95% of captured seeds were within 7.2 m) in both species, and dispersal distance was influenced by forest type in E. atrorubens. In addition, C. rubra showed clonal reproduction (20% of plants were of clonal origin) and very low fruiting success (only 1.6% of plants were fruiting) in comparison with E. atrorubens (25.7%). Gene flow was frequent up to 2 km in C. rubra and up to 125 km in E. atrorubens, and we detected a relatively high dispersal rate among regions in both species.
  • Although both species occupy similar habitats and have similar seed dispersal abilities, C. rubra is notably rarer in the study area. Considerably low fruiting success in this species likely limits its gene flow to longer distances and designates it more sensitive to habitat loss and fragmentation.
  相似文献   

17.
Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self‐incompatible (SI) and the male parent self‐compatible (SC) (the ‘SI × SC rule’). Additional, as yet unknown, UI mechanisms are independent of self‐incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen‐side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S‐RNase, the pistil determinant of S‐specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18‐fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9‐generated knockout mutants (fps2) in S. pennelliiLA0716 are self‐sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2‐based pollen selectivity does not involve S‐RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.  相似文献   

18.
  • The evolution of monomorphisms from heterostylous ancestors has been related to the presence of homostyly and the loss of self‐incompatibility, allowing the occurrence of selfing, which could be advantageous under pollinator limitation. However, flowers of some monomorphic species show herkogamy, attraction and rewarding traits that presumably favour cross‐pollination and/or a mixed mating system. This study evaluated the contributions of pollinators, breeding system and floral traits to the reproduction of Turnera velutina, a herkogamous monomorphic species.
  • Floral visitors and frequency of visits were recorded, controlled hand cross‐pollinations were conducted under greenhouse and natural conditions, and individual variation in floral traits was characterised to determine their contribution to seed production.
  • Apis mellifera was the most frequent floral visitor. Flowers presented approach herkogamy, high variation in nectar features, and a positive correlation of floral length with nectar volume and sugar concentration. Seed production did not differ between manual self‐ and cross‐pollinations, controls or open cross‐pollinations, but autonomous self‐pollination produced, on average, 82.74% fewer seeds than the other forms, irrespective of the level of herkogamy.
  • Differences in seed production among autonomous self‐pollination and other treatments showed that T. velutina flowers depend on insect pollination for reproduction, and that approach herkogamy drastically reduced seed production in the absence of pollen vectors. The lack of differences in seed production from manual cross‐ and self‐pollinations suggests the possible presence of a mixed mating system in the studied population. Overall, this species was possibly derived from a distylous ancestor but appears fully capable of outcrossing despite being monomorphic.
  相似文献   

19.
  • The facultative root hemi‐parasite Rhinanthus minor is often used in grassland habitat restoration projects to regulate ecosystem structure and function. Its impact on community productivity and diversity as a function of resource supply, sward composition and management has been widely investigated. However, there is a lack of information about the possible influence of seed quality on the efficacy of the hemi‐parasite.
  • Ten seed lots from commercial sources were sown in the field and their germination characteristics investigated in the laboratory. Seeds from four lots were also germinated and sown in pots alongside plants of two host species, Lotus corniculatus and Holcus lanatus. Plant establishment, height and flowering density were evaluated for the hemi‐parasite, while plant biomass was measured for both R. minor and its host.
  • Two aspects of seed quality influenced the field emergence of seed lots of R. minor, the radicle emergence (%) and the length of the lag period from the beginning of imbibition to germination (mean germination time), which indicates seed vigour. A longer lag period (lower vigour) was associated with higher levels of seedling mortality and lower plant vigour, in terms of plant height and biomass accumulation and was also reflected in the parasitic impact of the seed lots.
  • Seed quality, specifically germination and vigour, can influence the establishment, survival, subsequent plant productivity and parasitic impact of R. minor in vegetation restoration projects. Seed quality is discussed as a key factor to consider when predicting the impact of the hemi‐parasite on community productivity and diversity.
  相似文献   

20.
  • Genlisea violacea is a Brazilian endemic carnivorous plant species distributed in the cerrado biome, mainly in humid environments, on sandy and oligotrophic soil or wet rocks. Studies on reproductive biology or pollination in the Lentibulariaceae are notably scarce; regarding the genus Genlisea, the current study is the first to show systematic and standardised research on reproductive biology from field studies to describe the foraging of visiting insects and determine the effective pollinators of Genlisea.
  • We studied two populations of G. violacea through the observation of flower visitors for 4 months of the rainy and dry seasons. Stigmatic receptivity, pollen viability, and breeding system were evaluated together with histochemistry and morphological analyses of flowers.
  • The flowers showed stigmatic receptivity of 100% in open buds and mature flowers, reducing to 80% for senescent flowers. Nearly 80% of pollen grains are viable, decreasing to 40–45% after 48 h. Nectar is produced by glandular trichomes inside the spur. Two bee species are effective pollinators: one of the genus Lasioglossum (subgenus Dialictus: Halictidae) and the other of the genus Ceratina (subgenus Ceratinula: family Apidae). Moreover, bee‐like flies of the Syrphidae family may also be additional pollinators.
  • Genlisea violacea is an allogamous and self‐compatible species. The differences in flower‐visiting fauna for both populations can be attributed to factors such as climate, anthropogenic effect, seasonal factors related to insects and plants, as well as the morphological variation of flowers in both populations.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号