共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to investigate whether resource availability affects the degree of physiological integration and the growth pattern of interconnected ramets in the clonal plantMaianthemum bifolium (L.)F.W. Schmidt (Liliaceae), a rhizomatous herb of European forests, by studying it at two contrasting South Swedish beech forest sites termed “poor” and “rich”. The degree of physiological integration was studied by tracing the pattern of14C translocation and in a cutting experiment involving rhizome severing and defoliation treatments. The size of the plants, growth of new rhizomes, branching frequency, distance between shoots and the internode length were compared. The plants were larger, rhizomes had greater specific mass (mg mm?1), internodes were shorter and branching frequency higher at the rich site. The cutting treatments reduced the growth of new rhizomes at both sites, and new rhizome segments had lower specific mass in treated plants than in controls, showing the importance of physiological integration for new growth. Translocation of14C in May showed that the young rhizome tip was a strong sink for carbon. Basipetal translocation to older portions of the rhizome system was greater at the rich site than at the poor site. In September, four months after labelling, the rhizome tips were still strongly labelled with14C and basipetal translocation had increased at both sites. Plants at the rich site appeared to translocate larger amounts of14C basipetally than plants at the poor site. It is concluded thatM. bifolium shows a plastic response to resource availability by varying rhizome growth and branching frequency, but the degree of physiological integration is probably only indirectly affected through an increased number of sinks (new rhizome branches) along the ramet system at the rich site. 相似文献
2.
Clonal multiplication is a predominant type of reproduction in wetland species. However, both wetlands and plant organs of clonal growth are diverse, thus due to different stress factors operating in various wetlands preponderance of plants with specific clonal growth organs (CGOs) can be expected. To test this hypothesis the CGO spectra of wetland communities of the Netherlands were analysed, including a bog, a fen, heathland, a floodplain, river beds, fresh water pools, open salt water and a salt marsh. Moreover, it was evaluated whether different CGOs are characterised by different functional traits (shoot cyclicity, persistence of connections between ramets, number of offspring produced per year and lateral spread per year) in wetland species. Data on types of CGO, i.e., epigeogenous and hypogeogenous rhizomes, fragments and budding plants, stolons, tubers and bulbs, root-splitters, root-sprouters and special adaptations (turions) as well as their functional traits, were taken from the CLO-PLA 3 database. CGO spectra of wetland communities were analysed using two methods: comparison of observed vs. expected CGO spectra based on the presence/absence data and multivariate analysis (CCA) for inter-community differences considering species frequency. Moreover, relationships between CGOs and their functional traits were tested using multidimensional contingency tables. Apart from 26% of non-clonal species, the majority of wetland species was rhizomatous (51%). Other types of CGO were represented in less than 10% of species and root-derived CGOs were underrepresented (<2%) in comparison with terrestrial habitats. Among communities, fresh water pools and open salt water hosted higher proportion of species with fragments (∼10%) and turions (∼30%). Multivariate analysis divided wetland communities along the disturbance and hydric (water) gradients. Highly disturbed communities (salt marshes) were characterised by non-clonal species and species with root-derived CGOs. Aquatic communities (fresh water pools and open salt water) hosted species with the ability to spread by fragmentation and turions, contrary to permanently wet communities (bog and wet heathland) with the prevalence of species with epigeogenous rhizomes. It was also confirmed that the CGOs of wetland species differed in their traits. The most important functional trait characterising individual CGOs in the wetland flora was the degree of lateral spread (explained variability: 53%) followed by duration of persistence of connections between ramets (explained variability: 74%), which is in accordance with earlier distinguished strategies of clonal growth: integrator/splitter and spreading/non-spreading clones. 相似文献
3.
Jonathan P. Evans 《Oecologia》1992,89(2):265-276
Summary Within a physiologically integrated clone, the structure and functioning of an individual ramet is determined by: 1) the response of that ramet to its local environment and 2) its response to resource integration within the clone. In a multifactorial experiment, Hydrocotyle bonariensis ramets were grown in limiting resource environments with and without the benefit of basipetal resource movement from another branch of the clone. Ramets were analyzed for their morphological responses to variation in local light, water and nitrogen availability and to the superimposed effect of resource integration on these conditions. The expression of ramet morphology, from induction to development, was highly plastic in response to variable local resource availability. Resource integration changed a ramet's local response in a variety of ways depending on the resource(s) being translocated and the character involved. Among leaf characteristics (leaf weight, petiole height, blade area), resource translocation into the shade resulted in an enhancement of the local response. Similarly, the translocation of nitrogen and water generally increased clonal proliferation and sexual reproduction among ramets. In contrast, the translocation of water reversed the effect of local low water conditions on ramets by inhibiting root production. Some characters such as internode distance and leaf allometry were unaffected by integration. The maintenance of connections between ramets as a Hydrocotyle clone expands allows for resource sharing among widely separated ramets and can result in an integrated morpological response to a resource environment that is patchy in time and space. 相似文献
4.
The effects of moisture availability on clonal growth and biomass investment in the bamboo Pleioblastus maculata were investigated over a four-year period by transplanting Pleioblastus maculata clones into soils with different levels of moisture availability in the field. The results showed that: (1) The higher the moisture availability, the greater the total biomass of P. maculata clones. Although fewer culms are produced at the higher moisture levels, mean tiller biomass is greater. (2) Under different levels of moisture availability, obvious differences in the total rhizome length (p < 0.01), spacer length (p < 0.05) and the sizes of bamboo culms (height, p < 0.01; diameter, p < 0.01) were observed. Thus, the higher the moisture availability, the shorter the rhizomes and the larger ramets. (3) In microhabitats with low moisture availability, bamboo allocated more biomass to underground organs, which promotes elongation of rhizomes and increases root production, thereby helping to capture underground resources essential to growth. In microhabitats of high moisture availability, the biomass is primarily allocated to the aboveground growth of ramets. (4) We suggest that soil moisture availability effects the foraging strategies of bamboo, that bamboo plants growing with low moisture availability produce longer rhizomes (that is, more, although shorter, spacers) with more biomass allocation than plants in high moisture and have a better ability to forage to increase the probability of locating adequate moisture patches. Also, longer length distance between shoots (that is, longer spacers) in high soil moisture than in low is adapted to avoid intense competition from faster growing aboveground growth in high moisture patches. 相似文献
5.
Plant clonal spread is ubiquitous and of great interest, owing both to its key role in plant community assembly and its suitability for plant behaviour research. However, mechanisms that govern spreading distance are not well known. Here we link spacer costs and below-ground competition in a simple model of growth in a homogeneous below-ground environment, in which optimal distance between ramets is based on minimizing the sum of these costs. Using this model, we predict a high prevalence of clonal growth that does not employ spacers in resource-poor environments and a nonlinear increase in spreading distance in response to increasing below-ground resource availability. Analysis of database data on clonal growth in relationship to below-ground resource availability revealed that patterns of the spread based on stolons is compatible with the model''s predictions. As expected, model prediction failed for rhizomatous species, where spacer sizes are likely to be selected mainly to play roles other than spread. The model''s simplicity makes it useful as a null model in testing hypotheses about the effects of environmental heterogeneity on clonal spread. 相似文献
6.
7.
This study investigates the long-term effects of resource availability in a freshwater nematode community. We carried out a mesocosm experiment where natural nematode communities were exposed to nutrient addition/depletion over 2 years. Compared to the nutrient-addition treatment, species richness and diversity were strongly reduced upon nutrient depletion. The functional group of bacterial feeders particularly suffered severely from nutrient depletion. The decrease in diversity of bacterial feeders was linked to reduced species richness and diversity of large omnivorous species, as predicted by trophic-dynamic models. Tilmans (1976) statement, that under low nutrient levels the best competitor dominates the system, was applicable in our system. Upon nutrient depletion, resource depletion led to a monoculture of 1 small bacterial feeder, but even after 2 years of resource depletion, up to 16 species still coexisted. Our results provide strong evidence that freshwater nematode systems can be regulated by nutrient competition. 相似文献
8.
Seeds have often been emphasized in estimates of plant fitness because they are the units that carry genes to the next generation, disperse, and found new populations. We contend that clonal growth also needs to be considered when estimating fitness in clonal plants, regardless of whether fitness is measured from a genet or ramet perspective. Clonal growth affects genet fitness through both genet persistence and seed production. It affects ramet fitness through new ramet production, because both seeds and clonal propagants are considered offspring. The differential production of clonal propagants will contribute to fitness differences among individuals which may result in population-level changes in allele frequencies (i.e. microevolution). We describe a form of selection unique to clonal organisms, genotypic selection, that can result in evolution. Genotypic selection occurs when genotypically based traits are associated with differences in the rate of ramet production. It can lead to evolutionary change in quantitative trait means both directly and indirectly. It leads directly to change in the ramet population by increasing the proportion of ramets with more advantageous trait values. From the genet perspective, it leads indirectly to evolution within and among populations whenever significant portions of the genetic effect on a trait are inherited through seed. We argue that under most conditions, clonal growth will play a major role in the microevolution of clonal plants. 相似文献
9.
Modulation of relative growth rate and its components by water stress in Mediterranean species with different growth forms 总被引:7,自引:0,他引:7
Effects of water availability on seedling growth were analysed in eight Mediterranean species naturally occurring in the Balearic Islands. Seedlings were grown outdoors during summer under two irrigation treatments: field capacity and 35% of field capacity. The relative growth rate (RGR) strongly depended on the growth form, from highest values in herbs to lowest in woody perennials. The main component associated with interspecific variation in RGR was the specific leaf area (SLA), and a quantitative grouping of the different growth forms appeared along the regression line between both parameters. The slow-growing species, i.e. woody perennial shrubs, had the lowest SLA and the fast-growing perennial herbs, the highest, while woody semi-deciduous shrubs appeared intermediate. Decreases in RGR due to water stress were analysed in terms of the relative contribution of the leaf mass ratio (LMR), SLA and the net assimilation rate (NAR). Pooling all species, the decrease in RGR caused by water deficit was mainly explained by decreases in SLA. However, this general pattern was strongly dependent of growth form. Thus, in the woody perennial plants, the decrease in RGR was accompanied by a three-fold decrease in NAR which, however, increased in perennial herbs. SLA increased with decreasing water supply in woody perennial plants, and decreased in woody semi-deciduous shrubs and perennial herbs. Finally, decreases in LMR partly explained decreases in RGR in perennial herbs and woody perennial shrubs. This different response of the different growth forms may reflect differences in seedling adaptation and surviving strategies to drought periods. 相似文献
10.
Regional and local patterns in plant species richness with respect to resource availability 总被引:6,自引:0,他引:6
The hump-shaped relationship between plant species richness and productivity is a well-established and important paradigm. While plot-based species richness patterns on local scales have received much attention, little is currently known about species-based patterns on a regional scale. Using Ellenberg's indicator values for 1802 plant species in central Europe, we assess the patterns in regional species richness with respect to light, water, and mineral nutrient availability – three variables that strongly influence productivity. The results of this analysis are compared to those of published studies on smaller scales leading to the following conclusions:
- 1.
On a regional scale in central Europe there is a hump-shaped relationship between soil nutrient supply and plant species richness within a given biome.
11.
12.
13.
Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake 总被引:1,自引:0,他引:1
Background
Composts with different feedstocks may have differential effects on soil properties and plant growth which, may be further modulated by soil texture.Materials and methods
In a 77-day pot experiment in the glasshouse, we investigated the effect of a single application as mulch of six types of composts derived from different starting feedstocks in two soils (13% and 46% clay, referred to as S13 and S46) on soil physical, chemical and biological properties, plant growth and nutrient uptake. Composts were placed as 2.5?cm thick mulch layer on the soil surface and wheat plants were grown and harvested at 42?days and at 77?days (grain filling).Results
Composts differed in total and available N and P and particle size with C1, C3, C4 and C5 being fine-textured, whereas C2 and C6 were coarse-textured. Compost addition as mulch increased soil total organic C and EC, but had no effect on pH. In all treatments, cumulative soil respiration was higher in S13 than in S46 and was increased by compost addition with the greatest increase with C2 and C6. Compared to the unamended soil, most compost mulches (except C2) increased macroaggregate stability. Compost mulches significantly increased available P and N in both soils, except for C2. Compost mulches increased available N up to 6-fold in both soils with the strongest increase by C5. Most composts also increased wheat growth and shoot P and N concentrations with the greatest effect on plant N concentration by C5 and on plant P concentration by C4. However, C2 decreased shoot N and P concentrations compared to the unamended soil. Most compost mulches (except C2) increased mycorrhizal colonization by up to 50% compared to the unamended soil.Conclusions
Fine-textured compost mulches generally had a greater effect on soil properties and plant growth than coarse-textured composts. Despite distinct differences between the soils with respect to clay content, TOC and available P, the effect of the compost mulches on soil and plant properties was quite similar. 相似文献14.
Theory and empirical work have demonstrated that diverse communities can inhibit invasion. Yet, it is unclear how diversity influences invader impact, how impact varies among exotics, and what the relative importance of diversity is versus extrinsic factors that themselves can influence invasion. To address these issues, we established plant assemblages that varied in native species and functional richness and crossed this gradient in diversity with resource (water) addition. Identical assemblages were either uninvaded or invaded with one of three exotic forbs: spotted knapweed (Centaurea maculosa), dalmatian toadflax (Linaria dalmatica), or sulfur cinquefoil (Potentilla recta). To determine impacts, we measured the effects of exotics on native biomass and, for spotted knapweed, on soil moisture and nitrogen levels. Assemblages with high species richness were less invaded and less impacted than less diverse assemblages. Impact scaled with exotic biomass; spotted knapweed had the largest impact on native biomass compared with the other exotics. Although invasion depressed native biomass, the net result was to increase total community yield. Water addition increased invasibility (for knapweed only) but had no effect on invader impact. Together, these results suggest that diversity inhibits invasion and reduces impact more than resource additions facilitate invasion or impact. 相似文献
15.
Propagation, dispersal, and establishment are fundamental population processes, and are critical stages in the life cycle of an organism. In symbiotic organisms such as lichens, consisting of a fungus and a population of photobionts, reproduction is a complex process. Although many lichens are able to reproduce both sexually and asexually, the extent of vegetative propagation within local populations is unknown. We used six polymorphic microsatellite loci to investigate whether recombination is common in natural populations, and to assess if and how clonal reproduction influences the spatial genetic structure within populations of the epiphytic lichen species Lobaria pulmonaria. High genetic diversity within all 12 investigated populations and evidence of recombination, from various tests, indicated that L. pulmonaria is a predominantly outcrossing species. Nevertheless, clonality occurred in all populations, but the presence of recurring multilocus genotypes influenced the spatial genetic structure only within low-density populations. This could be interpreted as indicative of genetic bottlenecks owing to increased habitat loss and disturbance. Consequently, for a predominantly outcrossing lichen species, exogenous factors might be substantially altering population processes and hence genetic structure. 相似文献
16.
Reijers Valrie C. Lammers Carlijn de Rond Anne J. A. Hoetjes Sean C. S. Lamers Leon P. M. van der Heide Tjisse 《Oecologia》2020,192(1):201-212
Oecologia - Coastal ecosystems are often formed through two-way interactions between plants and their physical landscape. By expanding clonally, landscape-forming plants can colonize bare... 相似文献
17.
O. S. Mashkina T. M. Tabatskaya A. I. Gorobets K. A. Shestibratov 《Applied Biochemistry and Microbiology》2010,46(8):769-775
Conditions of cultivation and micropropagation of selected biotypes of five willow species (Salyx dasyclados Wimm., S. caspica Pall., S. triandra L., S. purpurea L., and S. viminalis L.) and two hybrids (×S. acuminata S. and ×S. palustris Host.) were optimized. Data on in vitro propagation of S. caspica, S. triandra, S. purpurea together with hybrids S. acuminata and S. palustris were obtained for the first time. It has been demonstrated that the outcome of cultivation and propagation of willows strongly depends on genotypic peculiarities of initial plants. The optimal terms of isolation and sterilization of single-node segments for obtaining 50–75% of aseptic viable developing cultures were estimated. The nutritive media were selected providing induction of stem development (to 67%), their rooting (to 91%), elongation (to 3–6 cm), and multiplication (propagation coefficient of 4). The designed method (adopted to different genotypes) can be applied for obtaining aseptic in vitro cultures serving as initial plant material for genetic transformation and mass propagation of plants with new agriculturally valuable characteristics which are of interest for construction of bioenergetic plantations and for needs of the paper industry. 相似文献
18.
? A high ability of alien plant species to capitalize on increases in resource availability has been suggested as an explanation for being globally successful. Here, we tested this hypothesis meta-analytically using existing data from experiments manipulating plant resources (light, water and nutrients). ? From these studies we extracted the response to resource increase of biomass, as an indicator of plant performance, and the responses of two traits related to resource capture: root : shoot ratio and specific leaf area (SLA). For 211 species recorded in the Global Compendium of Weeds, we assessed the relationship between effect sizes from such studies and the number of global regions where a species was established. ? We found that globally widespread species exhibited greater biomass responses to increases in resources overall, compared to less widespread species. Root : shoot ratio and SLA responses to increased resource availability were not related to species global distribution. ? In general, globally widespread alien plant species were better able to capitalize on increased availability of resources, through achieving increased growth and biomass accumulation, while greater plasticity of key resource-capture traits per se did not appear to be related to greater success. 相似文献
19.
Relative allocation to horn and body growth in bighorn rams varies with resource availability 总被引:5,自引:2,他引:5
Festa-Bianchet Marco; Coltman David W.; Turelli Luca; Jorgenson Jon T. 《Behavioral ecology》2004,15(2):305-312
Males may allocate a greater proportion of metabolic resourcesto maintenance than to the development of secondary sexual characterswhen food is scarce, to avoid compromising their probabilityof survival. We assessed the effects of resource availabilityon body mass and horn growth of bighorn rams (Ovis canadensis)at Ram Mountain, Alberta, Canada over 30 years. The number ofadult ewes in the population tripled during our study, and theaverage mass of yearling females decreased by 13%. We used theaverage mass of yearling females as an index of resource availability.Yearling female mass was negatively correlated with the bodymass of rams of all ages, but it affected horn growth only duringthe first three years of life. Yearly horn growth was affectedby a complex interaction of age, body mass, and resource availability.Among rams aged 24 years, the heaviest individuals hadsimilar horn growth at high and at low resource availability,but as ram mass decreased, horn growth for a given body massbecame progressively smaller with decreasing resource availability.For rams aged 59 years, horn growth was weakly but positivelycorrelated with body mass, and rams grew slightly more hornfor a given body mass as resource availability decreased. Whenfood is limited, young rams may direct more resources to bodygrowth than to horn growth, possibly trading long-term reproductivesuccess for short-term survival. Although horn growth of olderrams appeared to be greater at low than at high resource availability,we found no correlation between early and late growth in hornlength for the same ram, suggesting that compensatory horn growthdoes not occur in our study population. Young rams with longerhorns were more likely to be shot by sport hunters than thosewith shorter horns. Trophy hunting could select against ramswith fast-growing horns. 相似文献
20.
The trophic relations of the polychaete species associated with four different algal growth forms (filamentous, fan-shaped, bush-like and encrusting) were studied in the North Aegean Sea. Samples for the spatial analysis were collected in summer with a quadrate sampler (400 cm2) at a depth range of 15–40 m. Filamentous and encrusting forms were also seasonally sampled in order to detect the temporal changes. A total of 5,494 individuals belonging to 79 species were classified to 12 feeding guilds, considering the type of food, the feeding apparatus and the motility patterns involved. Carnivores dominated, followed by herbivores and filter-feeders, among all the algal forms studied, excepting the fan-shaped form where filter-feeders prevailed mainly due to a massive recruitment of spirorbids. With respect to the abundance of the various feeding guilds, filamentous and fan-shaped forms discriminated, whereas bush-like and encrusting forms showed high similarity. The occurrence of polychaete feeding guilds among both filamentous and encrusting forms showed seasonal changes, with summer and spring samples, respectively, discriminating. The results of the trophic group analysis conformed to previous information provided by a taxon composition analysis of the dominated by the same algae communities. However, a functional study can give additional information and is thus a useful tool for the study of hard bottom communities. 相似文献