首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
1. In many flowering plants, bumble bees may forage as both pollinators and nectar robbers. This mixed foraging behaviour may be influenced by community context and consequently, potentially affect pollination of the focal plant. 2. Salvia przewalskii is both pollinated and robbed exclusively by bumble bees. In the present study area, it was legitimately visited by two species of bumble bees with different tongue length, Bombus friseanus and Bombus religiosus, but it was only robbed by Bombus friseanus, the shorter‐tongued bumble bee. The intensity of nectar robbing and pollinator visitation rate to the plant were investigated across 26 communities in the Hengduan Mountains in East Himalaya during a 2‐year project. For each of these communities, the floral diversity, and the population size and floral resource of S. przewalskii were quantified. The abundances of the two bumble bee species were also recorded. 3. Both nectar robbing and pollinator visitation rate were influenced by floral diversity. However, pollinator visitation rate was not affected by nectar robbing. The results revealed that relative abundance of the two bumble bee species significantly influenced the incidence of nectar robbing but not the pollinator visitation rate. Increased abundance of B. religiosus, the legitimate visitors, exacerbated nectar robbing, possibly by causing B. friseanus to shift to robbing; however, pollinator visitation remained at a relatively high level. 4. The results may help to explain the persistence of both nectar robbing and pollination, and suggest that, in comparison to pollination, nectar robbing is a more unstable event in a community.  相似文献   

2.
3.
Floral scents are among the key signals used by pollinators to navigate to specific flowers. Thus, evolutionary changes in scents should have strong impacts on plant diversification, although scent‐mediated plant speciation through pollinator shifts has rarely been demonstrated, despite being likely. To examine whether and how scent‐mediated plant speciation may have occurred, we investigated the Asimitellaria plant lineage using multidisciplinary approaches including pollinator observations, chemical analyses of the floral scents, electroantennographic analyses and behavioural bioassays with the pollinators. We also performed phylogenetically independent contrast analyses of the pollinator/floral scent associations. First, we confirmed that the pairs of the sympatric, cross‐fertile Asimitellaria species in three study sites consistently attract different pollinators, namely long‐tongued and short‐tongued fungus gnats. We also found that a stereoisomeric set of floral volatiles, the lilac aldehydes, could be responsible for the pollinator specificity. This is because the compounds consistently elicited responses in the antennae of the long‐tongued fungus gnats and had contrasting effects on the two pollinators, that is triggering the nectaring behaviour of long‐tongued fungus gnats while repelling short‐tongued fungus gnats in a laboratory experiment. Moreover, we discovered that volatile composition repeatedly switched in Asimitellaria between species adapted to long‐tongued and short‐tongued fungus gnats. Collectively, our results support the idea that recurrent scent‐mediated speciation has taken place in the Asimitellaria–fungus gnat system.  相似文献   

4.
  • 1 Declining numbers in honeybees and various wild bee species pose a threat to global pollination services. The identification and quantification of the pollination service provided by different taxa within the pollinator guild is a prerequisite for the successful establishment of nature conservation and crop management regimes.
  • 2 Wild bees and hoverflies are considered to be valuable pollinators in agricultural and natural systems. Although some information on pollination efficiency of individual pollinator species is available, comparative studies of both taxa at different densities are rare. In the present study, the efficiency of the solitary mason bee Osmia rufa and two hoverfly species (Eristalis tenax and Episyrphus balteatus) as pollinators of oilseed rape Brassica napus was examined in a standardized caged plant breeding regime. Honeybee Apis mellifera colonies were used as a reference pollinator taxon.
  • 3 Yield parameters responded differently to pollinator density and identity. Fruit set and number of seeds per pod increased with increasing pollinator density, although these were stronger in the mason bee than the hoverfly treatment. Weight per 1000 seeds did not respond to any pollinator treatment, indicating that seed quality was not affected. Oilseed rape yield in the highest tested densities of both pollinator taxa resulted in yield values close to the efficiency of small honeybee colonies.
  • 4 Hoverflies required approximately five‐fold densities of the red mason bees to reach a similar fruit set and yield. Thus, mason bees are more efficient in plant breeding and managed pollination systems. Both natural pollinator taxa, however, are of potential value in open and closed crop production systems.
  相似文献   

5.
  • Analyses of resource presentation, floral morphology and pollinator behaviour are essential for understanding specialised plant‐pollinator systems. We investigated whether foraging by individual bee pollinators fits the floral morphology and functioning of Blumenbachia insignis, whose flowers are characterised by a nectar scale‐staminode complex and pollen release by thigmonastic stamen movements.
  • We described pollen and nectar presentation, analysed the breeding system and the foraging strategy of bee pollinators. We determined the nectar production pattern and documented variations in the longevity of floral phases and stigmatic pollen loads of pollinator‐visited and unvisited flowers.
  • Bicolletes indigoticus (Colletidae) was the sole pollinator with females revisiting flowers in staminate and pistillate phases at short intervals, guaranteeing cross‐pollen flow. Nectar stored in the nectar scale‐staminode complex had a high sugar concentration and was produced continuously in minute amounts (~0.09 μl·h?1). Pushing the scales outward, bees took up nectar, triggering stamen movements and accelerating pollen presentation. Experimental simulation of this nectar uptake increased the number of moved stamens per hour by a factor of four. Flowers visited by pollinators received six‐fold more pollen on the stigma than unvisited flowers, had shortened staminate and pistillate phases and increased fruit and seed set.
  • Flower handling and foraging by Bicolletes indigoticus were consonant with the complex flower morphology and functioning of Blumenbachia insignis. Continuous nectar production in minute quantities but at high sugar concentration influences the pollen foraging of the bees. Partitioning of resources lead to absolute flower fidelity and stereotyped foraging behaviour by the sole effective oligolectic bee pollinator.
  相似文献   

6.
I examined relationships between tongue length of orchid bees (Apidae: Euglossini) and nectar spur length of their flowers in the genera Calathea, Costus, and Dimerocostus using phylogenetically independent contrasts. Long‐tubed flowers have specialized on one or several species of long‐tongued euglossine bees, but long‐tongued bees have not specialized on long‐tubed flowers. Whereas long tongues may have evolved to provide access to a wider variety of nectar resources, long nectar spurs may be a mechanism for flowers to conserve nectar resources while remaining attractive to traplining bee visitors.  相似文献   

7.
  • Plant species that are effective colonisers of transient habitats are expected to have a capacity for uniparental reproduction and show flexibility in pollination systems. Such traits may enable populations to be established from a small number of founding individuals without these populations succumbing to reductions in fecundity arising from pollinator limitation.
  • We tested these predictions for Aloe thraskii (Xanthorrhoeaceae), a succulent treelet that colonises shifting coastal dunes and has both bird and bee pollinators. We performed hand‐pollination experiments, and selectively excluded bird visitors to determine differences in pollinator effectiveness. We measured pollinator visitation rates and fecundity in populations varying in their size, density and isolation distance.
  • Controlled hand‐pollinations revealed that unlike most other Aloe species, A. thraskii is self‐compatible and thus capable of uniparental reproduction. The species does however depend on pollinators and is visited by various bird species as well as by bees. Fruit and seed set are not affected by selective exclusion of birds, thus indicating that bees are effective pollinators. Bird visitation rates increased with increasing plant height and population size, while bee visitation rates increased with increasing population size and density. We found that seed set per flower was lower in large populations than in small populations.
  • These results suggest that establishment of populations of A. thraskii from a small number of individuals is unlikely to be limited by the fecundity of individual plants.
  相似文献   

8.
The effects of host size and host species on the prevalence and fitness of conopid flies (Diptera: Conopidae) parasitizing bumblebees (Hymenoptera: Apidae) were investigated. Field data from nine sites across south‐western Alberta, Canada, showed that conopids parasitized, on average, 12.3% of workers and 3.5% of male bees. In general, bee mass was a better predictor of host use and conopid offspring size than bee species. Host mass could not, however, explain the very low prevalence of conopids in the long‐tongued bumblebee, Bombus californicus Smith, or in male bees in general. Conopids predominately infested bees of intermediate size, and as a result, occurred most commonly in the intermediately sized species, B. flavifrons Cresson. Host quality, in terms of conopid offspring size, increased as a non‐linear function of bee size. The results are discussed with respect to the impact of conopids on bumblebee populations, and the relation between host quality and patterns of host use.  相似文献   

9.
  • Studies of floral polymorphisms have focused on heterostyly, while stigma‐height dimorphism has received considerably less attention. Few studies have examined the reproductive biology of species with stigma‐height dimorphism to understand how factors influencing mate availability and pollen transfer are related to morph ratios in populations.
  • Floral morphological traits, especially herkogamy and reciprocity, pollinator visitation, breeding system and spatiotemporal mate availability, are known to affect inter‐morph pollination and morph ratios in species with stigma‐height dimorphism. In this study, we investigated the presence of stigma‐height dimorphism and estimated morph ratios in four naturally occurring populations of Jasminum malabaricum. We quantified morph‐ and population‐specific differences in the abovementioned factors in these populations to understand the observed morph ratios.
  • The positions of anthers and stigmas were characteristic of stigma‐height dimorphism, the first report of this polymorphism in the genus. All study populations were isoplethic, implying equal fitness of both morphs. Herkogamy was higher in the short‐styled morph, while reciprocity was higher between the long‐styled stigma and short‐styled anthers. Long‐ and short‐tongued pollinators were common floral visitors, and we observed no differences between morphs in spatiotemporal mate availability or pollinator visitation. Neither morph exhibited self‐ or heteromorphic incompatibility.
  • The short‐styled stigma had lower reciprocity but likely receives sufficient inter‐morph pollen from long‐tongued pollinators, and also by avoiding self‐pollination due to higher herkogamy. These results highlight the importance of sufficient effective pollinators and floral morphological features, particularly herkogamy, in maintaining isoplethy in species with stigma‐height dimorphism.
  相似文献   

10.
Habitat fragmentation can have severe effects on plant pollinator interactions, for example changing the foraging behaviour of pollinators. To date, the impact of plant population size on pollen collection by pollinators has not yet been investigated. From 2008 to 2010, we monitored nine bumble bee species (Bombus campestris, Bombus hortorum s.l., Bombus hypnorum, Bombus lapidarius, Bombus pascuorum, Bombus pratorum, Bombus soroensis, Bombus terrestris s.l., Bombus vestalis s.l.) on Vaccinium uliginosum (Ericaceae) in up to nine populations in Belgium ranging in size from 80 m2 to over 3.1 ha. Bumble bee abundance declined with decreasing plant population size, and especially the proportion of individuals of large bumble bee species diminished in smaller populations. The most remarkable and novel observation was that bumble bees seemed to switch foraging behaviour according to population size: while they collected both pollen and nectar in large populations, they largely neglected pollen collection in small populations. This pattern was due to large bumble bee species, which seem thus to be more likely to suffer from pollen shortages in smaller habitat fragments. Comparing pollen loads of bumble bees we found that fidelity to V. uliginosum pollen did not depend on plant population size but rather on the extent shrub cover and/or openness of the site. Bumble bees collected pollen only from three plant species (V. uliginosum, Sorbus aucuparia and Cytisus scoparius). We also did not discover any pollination limitation of V. uliginosum in small populations. We conclude that habitat fragmentation might not immediately threaten the pollination of V. uliginosum, nevertheless, it provides important nectar and pollen resources for bumble bees and declining populations of this plant could have negative effects for its pollinators. The finding that large bumble bee species abandon pollen collection when plant populations become small is of interest when considering plant and bumble bee conservation.  相似文献   

11.
12.
1. Size variations in pollinator populations may modify competitive interactions among foragers. Competition among pollinators has been shown to lead to one of two contrasting behaviours: either specialisation to the most profitable plant species or generalisation to several species. When foraging, pollinators are also confronted with heterogeneity in the spatial distribution of plant resources. Because variations in both the forager density and plant spatial distribution can affect pollinator behaviour, focus was on the interactive effect of these two factors. 2. Bumble bee (Bombus terrestris L.) individuals were trained on a focal species (Lotus corniculatus L.) and experimentally tested whether variations in the forager density (two or six bumble bees foraging together), plant community spatial distribution (two plant species: L. corniculatus and Medicago sativa, which were either patchily or randomly distributed), and their interaction modified bumble bee foraging behaviour. 3. It was shown that when confronted with a high forager density, bumble bees focused their visits towards the most familiar species, especially when foraging under a random plant distribution. These modifications affected the fruiting of the focal plant species, with a significantly lower reproductive success under low density/patchy conditions. 4. This study demonstrates that the foraging decisions of bumble bees are influenced by variations in both the conspecific density and plant spatial distribution. Given the increasing impact of human activities on plant‐pollinator communities, this raises the question of the potential implications of these results for plant communities in natural conditions when confronted with variations in the pollinator density and spatial distribution of plants.  相似文献   

13.
  1. Pollinators are introduced to agroecosystems to provide pollination services. Introductions of managed pollinators often promote ecosystem services, but it remains largely unknown whether they also affect evolutionary mutualisms between wild pollinators and plants.
  2. Here, we developed a model to assess effects of managed honey bees on mutualisms between plants and wild pollinators. Our model tracked how interactions among wild pollinators and honey bees affected pollinator and plant populations.
  3. We show that when managed honey bees have a competitive advantage over wild pollinators, or a greater carrying capacity, the honey bees displace the wild pollinator. This leads to reduced plant density because plants benefit less by visits from honey bees than wild pollinators that coevolved with the plants.
  4. As wild pollinators are displaced, plants evolve by increasing investment in traits that are attractive for honey bees but not wild pollinators. This evolutionary switch promotes wild pollinator displacement. However, higher mutualism investment costs by the plant to the honey bee can promote pollinator coexistence.
  5. Our results show plant evolution can promote displacement of wild pollinators by managed honey bees, while limited plant evolution may lead to pollinator coexistence. More broadly, effects of honey bees on wild pollinators in agroecosystems, and effects on ecosystem services, may depend on the capacity of plant populations to evolve.
  相似文献   

14.
  1. Pollination syndromes refer to stereotyped floral characteristics (flower colour, shape, etc.) that are associated with a functional group of pollinators (bee, bird, etc.).
  2. The trumpet creeper Campsis radicans, endemic to the southeast and mid‐west United States, has been assigned to the hummingbird‐pollination syndrome, due mainly to its red, trumpet‐shaped flowers.
  3. Previous studies demonstrated that the ruby‐throated hummingbird Archilochus colubris is C. radicans' primary pollinator, but anecdotal data suggest various bee species may provide pollination service when hummingbirds are absent.
  4. This study characterised C. radicans nectar volume and concentration by time of day. Nectar volume was suitable for hummingbirds, but concentration was higher than typical hummingbird‐pollinated plants (~20% w/w); at ~30% w/w, it approached the concentration expected in bee‐pollinated plants (~50% w/w). We also found substantial amounts of nectar at night.
  5. Two C. radicans populations received virtually no hummingbird visits, but the number of bees were markedly higher than in the populations previously described. Interestingly, there were no night‐time visitors despite the large quantity of nocturnal nectar.
  6. Based on previously published pollen delivery per visit by various species, this study estimated that cumulative deposition by bees routinely reached pollen deposition thresholds for setting fruit in C. radicans. They are, unequivocally, the predominant pollinators in these populations, thus providing pollination service in the absence of hummingbirds.
  7. These results highlight C. radicans as a food source for native bees and add to the understanding of how floral phenotypes can facilitate pollination by disparate functional groups.
  相似文献   

15.
16.
Temperature and the pollinating activity of social bees   总被引:1,自引:0,他引:1  
Abstract.
  • 1 Thermal constraints on flight acivity limit the pollinating effectiveness of bees. Each species of social bee has a microclimatic ‘window’ within which foraging flight can be sustained.
  • 2 To predict whether a given species of social bee is worth testing as a pollinator in a given climate, it is useful to know at least the lower limits of that microclimatic ‘window’. We consider how information from a series of bee counts through a day can be used to characterize a bee species in terms of activity/microclimate relations as a basis for predicting the diel pattern of foraging activity of a bee introduced into a new climate as a pollinator.
  • 3 We discuss the relative merits of bee counts at a foraging patch and counts based on hive traffic as indices of the proportion of bees active.
  • 4 We suggest that the activity/microclimate relations of a species be expressed in terms of the lower threshold black globe temperature for flight activity. Black globe temperature, Tg, is easily measured with inexpensive equipment, and can substitute for measurements of ambient temperature and radiation as a predictor of diel patterns of bee activity.
  • 5 We use examples of field data to explore the relationship between microclimate and activity for the honeybee Apis mellifera and several species of bumblebee, Bombus. Regression analysis is used to relate activity to Tg and to identify the lower temperature threshold for activity from field bee counts.
  • 6 In field studies analysed here, the bumblebees Bombus terrestrisllucorum, B.pascuorum and B.hortorum began foraging at lower temperatures than honey-bees or B.lapidarius.
  相似文献   

17.
As honeybees are the main pollinator subject to an intense research regarding effects of pesticides, other ecologically important native bee pollinators have received little attention in ecotoxicology and risk assessment of pesticides in general, and insecticides in particular, some of which are perceived as reduced‐risk compounds. Here, the impact of three reduced‐risk insecticides – azadirachtin, spinosad and chlorantraniliprole – was assessed in two species of stingless bees, Partamona helleri and Scaptotrigona xanthotrica, which are important native pollinators in Neotropical America. The neonicotinoid imidacloprid was used as a positive control. Spinosad exhibited high oral and contact toxicities in adult workers of both species at the recommended label rates, with median survival times (LT50s) ranging from 1 to 4 h, whereas these estimates were below 15 min for imidacloprid. Azadirachtin and chlorantraniliprole exhibited low toxicity at the recommended label rates, with negligible mortality that did not allow LT50 estimation. Sublethal behavioural assessments of these two insecticides indicated that neither one of them affected the overall group activity of workers of the two species. However, both azadirachtin and chlorantraniliprole impaired individual flight take‐off of P. helleri and S. xanthotrica worker bees, which may compromise foraging activity, potentially leading to reduced colony survival. These findings challenge the common perception of non‐target safety of reduced‐risk insecticides and bioinsecticides, particularly regarding native pollinator species.  相似文献   

18.
The production of diverse and affordable agricultural crop species depends on pollination services provided by bees. Indeed, the proportion of pollinator‐dependent crops is increasing globally. Agriculture relies heavily on the domesticated honeybee; the services provided by this single species are under threat and becoming increasingly costly. Importantly, the free pollination services provided by diverse wild bee communities have been shown to be sufficient for high agricultural yields in some systems. However, stable, functional wild bee communities require floral resources, such as pollen and nectar, throughout their active season, not just when crop species are in flower. To target floral provisioning efforts to conserve and support native and managed bee species, we apply network theoretical methods incorporating plant and pollinator phenologies. Using a two‐year dataset comprising interactions between bees (superfamily Apoidea, Anthophila) and 25 native perennial plant species in floral provisioning habitat, we identify plant and bee species that provide a key and central role to the stability of the structure of this community. We also examine three specific case studies: how provisioning habitat can provide temporally continuous support for honeybees (Apis mellifera) and bumblebees (Bombus impatiens), and how resource supplementation strategies might be designed for a single genus of important orchard pollinators (Osmia). This framework could be used to provide native bee communities with additional, well‐targeted floral resources to ensure that they not only survive, but also thrive.  相似文献   

19.
Floral variation among closely related species is thought to often reflect differences in pollination systems. Flowers of the large genus Impatiens are characterized by extensive variation in colour, shape and size and in anther and stigma positioning, but studies of their pollination ecology are scarce and most lack a comparative context. Consequently, the function of floral diversity in Impatiens remains enigmatic. This study documents floral variation and pollination of seven co‐occurring Impatiens spp. in the Southeast Asian diversity hotspot. To assess whether floral trait variation reflects specialization for different pollination systems, we tested whether species depend on pollinators for reproduction, identified animals that visit flowers, determined whether these visitors play a role in pollination and quantified and compared key floral traits, including floral dimensions and nectar characteristics. Experimental exclusion of insects decreased fruit and seed set significantly for all species except I. muscicola, which also received almost no visits from animals. Most species received visits from several animals, including bees, birds, butterflies and hawkmoths, only a subset of which were effective pollinators. Impatiens psittacina, I. kerriae, I. racemosa and I. daraneenae were pollinated by bees, primarily Bombus haemorrhoidalis. Impatiens chiangdaoensis and I. santisukii had bimodal pollination systems which combined bee and lepidopteran pollination. Floral traits differed significantly among species with different pollination systems. Autogamous flowers were small and spurless, and did not produce nectar; bee‐pollinated flowers had short spurs and large floral chambers with a wide entrance; and bimodally bee‐ and lepidopteran‐pollinated species had long spurs and a small floral chamber with a narrow entrance. Nectar‐producing species with different pollination systems did not differ in nectar volume and sugar concentration. Despite the high frequency of bee pollination in co‐occurring species, individuals with a morphology suggestive of hybrid origin were rare. Variation in floral architecture, including various forms of corolla asymmetry, facilitates distinct, species‐specific pollen‐placement on visiting bees. Our results show that floral morphological diversity among Impatiens spp. is associated with both differences in functional pollinator groups and divergent use of the same pollinator. Non‐homologous mechanisms of floral asymmetry are consistent with repeated independent evolution, suggesting that competitive interactions among species with the same pollination system have been an important driver of floral variation among Impatiens spp.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号