首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wetland restoration aims to recreate or enhance valuable ecosystem services lost during wetland destruction. Regaining wetland ecosystem services depends on restarting basic wetland functions, like carbon (C) storage, which are unmeasured in many Wetlands Reserve Program (WRP) restoration sites. We collected soil and plant data from 17 WRP sites in western New York that were used for tillage or non-tillage agriculture and then actively restored as isolated depressional wetlands by excavating basins and disabling drainage systems. Sites had been restored for 0–15 years when sampled in August-October 2010. We analyzed data as chronosequences and tested whether soil and vegetation parameters in restored wetlands, over time, (1) departed from pre-restoration baselines, estimated using active agricultural fields paired to each WRP site, and (2) converged towards “natural” benchmarks, estimated from four naturally-occurring wetlands. Restored WRP soils remained similar to agricultural soils in organic matter, density, moisture, and belowground plant biomass across chronosequences, indicating negligible C storage and belowground development for 15 years following restoration. Soil changes were limited in sites restored after both tillage and non-tillage agriculture and throughout the upland meadow, emergent shoreline, and open-water habitat zones that characterize these sites. Many plant metrics like aboveground biomass matched natural wetlands within 15 years, but recovered inconsistently among tilled and untilled sites and across all habitat zones, suggesting land-use history impacts and/or zonation effects. Disparities in recovery times exists between vegetation, which can respond quickly to wetland restoration, and underlying soils, which show limited signs of recovery 15 years after being restored.  相似文献   

2.
Measuring the success of wetland restoration efforts requires an assessment of the wetland plant community as it changes following restoration. But analyses of restored wetlands often include plant community data from only one time period. We studied the development of plant communities at 13 restored marshes in northern New York for 4 years, including 1 year prior to restoration and 3 years afterwards. Restored wetlands ranged in size from 0.23 to 1.70 ha. Four reference wetlands of similar basin morphology, soil type, and size (0.29–0.48 ha) that occurred naturally in the same area were studied as comparisons. Dike construction to restore hydrology disturbed the existing vegetation in some parts of the restored sites, and vegetation was monitored in both disturbed and undisturbed areas. Undisturbed areas within the restored sites, which were dominated by upland field grasses before restoration, developed wetland plant communities with lower wetland index values but comparable numbers of wetland plant species than the reference wetlands, and they lagged behind the reference sites in terms of total wetland plant cover. There were significantly more plant species valuable as food sources for wetland birds, and a significantly higher percent cover of these species, at the undisturbed areas of the restored sites than at the reference wetlands. Areas of the restored sites that were disturbed by dike construction, however, often developed dense, monospecific cattail stands. In general, the plant communities at restored sites became increasingly similar to those at the reference wetlands over time, but higher numbers of herbaceous plants developed at the restored sites, including food plants for waterfowl, rails, and songbirds. Differences in shrub cover will probably lessen as natural recolonization increases shrub cover at the restored sites. Natural recolonization appears to be an effective technique for restoring wetlands on abandoned agricultural fields with established plant cover, but it is less successful in areas where soil has been exposed by construction activity.  相似文献   

3.
Batzer  Darold P.  Jackson  C. Rhett  Mosner  Melinda 《Hydrobiologia》2000,441(1):123-132
We studied 12 small, seasonally flooded, depressional wetlands on the Atlantic Coastal Plain of Georgia, U.S.A. Each wetland was embedded in stands of managed plantation pine. The pine trees surrounding each wetland had been harvested and replanted beginning in 1997 (2 sites), 1995 (2 sites), 1993 (1 site), 1988 (2 sites), 1984 (2 sites) or 1975 (3 sites). Regressions of various environmental variables with harvest histories indicated that those wetlands surrounded by smaller trees had greater light levels, water temperatures, pH, herbaceous plant cover and biomass, terrestrial invertebrate diversities and numbers, and water flea numbers, and lower water electrical conductivities and aquatic oligochaete numbers than those wetlands surrounded by more mature trees. Detected variations in hydroperiod, water depth, dissolved oxygen levels, sediment inputs, macrophyte diversity, periphyton biomass and densities of most aquatic invertebrates were not clearly correlated with past histories of peripheral tree harvest. This study suggests that harvesting trees around small wetlands initiates physical and ecological changes within the embedded habitats and that changes can persist for up to 15 years.  相似文献   

4.
In order to increase our understanding of the interaction of soil-halophyte (Salicornia brachiata) relations and phytoremediation, we investigated the aboveground biomass, carbon fixation, and nutrient composition (N, P, K, Na, Ca, and Mg) of S. brachiata using six sampling sites with varying characteristics over one growing season in intertidal marshes. Simultaneously, soil characteristics and nutrient concentrations were also estimated. There was a significant variation in soil characteristics and nutrient contents spatially (except pH) as well as temporally. Nutrient contents in aboveground biomass of S. brachiata were also significantly differed spatially (except C and Cl) as well as temporally. Aboveground biomass of S. brachiata ranged from 2.51 to 6.07 t/ha at maturity and it was positively correlated with soil electrical conductivity and available Na, whereas negatively with soil pH. The K/Na ratio in plant was below one, showing tolerance to salinity. The aboveground C fixation values ranged from 0.77 to 1.93 C t/ha at all six sampling sites. This study provides new understandings into nutrient cycling—C fixation potential of highly salt-tolerant halophyte S. brachiata growing on intertidal soils of India. S. brachiata have a potential for amelioration of the salinity due to higher Na bioaccumulation factor.  相似文献   

5.
The functional and structural attributes of algal assemblages were studied in 25 restored and 20 extant depressional wetlands in southern central Michigan. Environmental conditions and algal assemblages were compared between restored and extant wetlands and among habitats within wetlands. Restored marshes generally had lower shading by macrophytes, nutrient concentrations, and sediment organic matter. Relative biovolume of non-diatom algae was significantly different among plankton, macrophyte and sediment habitats in restored wetlands, but did not differ between macrophytes and sediments in extant wetlands. Species composition of diatom assemblages was not significantly different between plants and sediments in both restored and extant wetlands. The observed differences in non-diatom algae could not be attributed to any measured environmental variable; however, diatom assemblage differences between habitats increased with light irradiance. Differences in sediment diatom assemblages were observed between restored and extant wetlands and were related to differences in nutrients, pH, and canopy cover. Differences were also observed between epiphytic diatom assemblages in restored and extant wetlands and they were related to light and dissolved oxygen. In summary, differences in light and nutrient availability were the main environmental factors differentiating algal communities in wetlands.  相似文献   

6.
Restored wetland soils differ significantly in physical and chemical properties from their natural counterparts even when plant community compositions are similar, but effects of restoration on microbial community composition and function are not well understood. Here, we investigate plant-microbe relationships in restored and natural tidal freshwater wetlands from two subestuaries of the Chesapeake Bay. Soil samples were collected from the root zone of Typha latifolia, Phragmites australis, Peltandra virginica, and Lythrum salicaria. Soil microbial composition was assessed using 454 pyrosequencing, and genes representing bacteria, archaea, denitrification, methanogenesis, and methane oxidation were quantified. Our analysis revealed variation in some functional gene copy numbers between plant species within sites, but intersite comparisons did not reveal consistent plant-microbe trends. We observed more microbial variations between plant species in natural wetlands, where plants have been established for a long period of time. In the largest natural wetland site, sequences putatively matching methanogens accounted for ∼17% of all sequences, and the same wetland had the highest numbers of genes coding for methane coenzyme A reductase (mcrA). Sequences putatively matching aerobic methanotrophic bacteria and anaerobic methane-oxidizing archaea (ANME) were detected in all sites, suggesting that both aerobic and anaerobic methane oxidation are possible in these systems. Our data suggest that site history and edaphic features override the influence of plant species on microbial communities in restored wetlands.  相似文献   

7.
We compared potential denitrification and phosphorus (P) sorption in restored depressional wetlands, restored riparian buffers, and natural riparian buffers of central Ohio to determine to what extent systems restored under the U.S. Department of Agriculture's Wetland Reserve Program (WRP) and Conservation Reserve Program (CRP) provide water quality improvement benefits, and to determine which practice is more effective at nutrient retention. We also measured soil nutrient pools (organic C, N, and P) to evaluate the potential for long‐term C sequestration and nutrient accumulation. Depressional wetland soils sorbed twice as much P as riparian soils, but had significantly lower denitrification rates. Phosphorus sorption and denitrification were similar between the restored and natural riparian buffers, although all Natural Resources Conservation Service (NRCS) practices had higher denitrification than agricultural soils. Pools of organic C (2570–3320 g/m2), total N (216–243 g/m2), and total P (60–71 g/m2) were comparable among all three NRCS practices but were greater than nearby agricultural fields and less than natural wetlands in the region. Overall, restored wetlands and restored and natural riparian buffers provide ecosystem services to the landscape that were lost during the conversion to agriculture, but the delivery of services differs among conservation practices, with greater N removal by riparian buffers and greater P removal by wetlands, attributed to differences in landscape position and mineral soil composition. At the landscape, and even global level, wetland and riparian restoration in agricultural landscapes will reintroduce multiple ecosystem services (e.g. C sequestration, water quality improvement, and others) and should be considered in management plans .  相似文献   

8.
Nutrient cycling in terrestrial ecosystems is affected by various factors such as plant diversity and insect herbivory. While several studies suggest insect herbivory to depend on plant diversity, their interacting effect on nutrient cycling is unclear. In a greenhouse experiment with grassland microcosms of one to six plant species of two functional groups (grasses and legumes), we tested the influence of plant species richness (diversity) and functional composition on plant community biomass production, insect foliar herbivory, soil microbial biomass, and nutrient concentrations in throughfall. To manipulate herbivory, zero, three or six generalist grasshoppers (Chorthippus parallelus) were added to the plant communities. Increasing plant species richness increased shoot biomass and grasshopper performance, without significantly affecting root biomass or insect herbivory. Plant functional composition affected all of these parameters, e.g. legume communities showed the highest shoot biomass, the lowest grasshopper performance and suffered the least herbivory. Nutrient concentrations (dissolved mineral N, PO4‐P, SO4‐S) and pH in throughfall increased with herbivory. PO4‐P and pH increases were positively affected by plant diversity, especially under high herbivore pressure. Plant functional composition affected several throughfall variables, sometimes fully explaining diversity effects. Increasing plant diversity tended to increase soil microbial biomass, but only under high herbivore pressure. Faeces quantities strongly correlated with changes in pH and PO4‐P; frass may therefore be an important driver of throughfall pH and a main source of PO4‐P released from living plants. Our results indicate that insect herbivory may significantly influence fast nutrient cycling processes in natural communities, particularly so in managed grasslands.  相似文献   

9.
Natural wetland ecosystems continue to suffer widespread destruction and degradation. Many recent studies argue that artificial or restored wetlands compensate for wetland loss and are valuable for waterbird conservation. However, detailed comparisons of the value of natural, artificial and restored wetlands are lacking. Our aim was to assess if the restoration or creation of wetlands can fully compensate for the loss of natural wetlands for waterbirds. We compared the waterbird communities in a set of 20 natural, restored and artificial wetlands, all of which are considered important for waterbirds and are located within the same protected area (Doñana Natural Space, south‐west Spain). We used different measures of diversity, including phylogenetic relatedness, and the proportion of threatened species at national, European and international levels. We found that artificial wetlands have consistently lower value than restored and natural wetlands, with little difference between the latter two. Natural wetlands are essential for conserving diversity across the tree of life and for threatened species, but restored wetlands can be of similar value and can assure maintenance of key ecological processes. Thus, when economic costs per unit area are similar, resources for wetland conservation are better invested in restoration projects than in wetland creation, and caution is required when suggesting that artificial wetlands compensate for the loss of natural wetlands.  相似文献   

10.
Variation in nitrogen and phosphorus concentrations of wetland plants   总被引:11,自引:0,他引:11  
The use of nutrient concentrations in plant biomass as easily measured indicators of nutrient availability and limitation has been the subject of a controversial debate. In particular, it has been questioned whether nutrient concentrations are mainly species' traits or mainly determined by nutrient availability, and whether plant species have similar or different relative nutrient requirements. This review examines how nitrogen and phosphorus concentration and the N:P ratio in wetland plants vary among species and sites, and how they are related to nutrient availability and limitation. We analyse data from field studies in European non-forested wetlands, from fertilisation experiments in these communities and from growth experiments with wetland plants. Overall, the P concentration was more variable than the N concentration, while variation in N:P ratios was intermediate. Field data showed that the N concentration varies more among species than among sites, whereas the N:P ratio varies more among sites than among species, and the P concentration varies similarly among both. Similar patterns of variation were found in fertilisation experiments and in growth experiments under controlled nutrient supply. Nutrient concentrations and N:P ratios in the vegetation were poorly correlated with various measures of nutrient availability in soil, but they clearly responded to fertilisation in the field and to nutrient supply in growth experiments. In these experiments, biomass N:P ratios ranged from 3 to 40 and primarily reflected the relative availabilities of N and P, although N:P ratios of plants grown at the same nutrient supply could vary three-fold among species. The effects of fertilisation with N or P on the biomass production of wetland vegetation were well related to the N:P ratios of the vegetation in unfertilised plots, but not to N or P concentrations, which supports the idea that N:P ratios, rather than N or P concentrations, indicate the type of nutrient limitation. However, other limiting or stressing factors may influence N:P ratios, and the responses of individual plant species to fertilisation cannot be predicted from their N:P ratios. Therefore, N:P ratios should only be used to assess which nutrient limits the biomass production at the vegetation level and only when factors other than N or P are unlikely to be limiting.  相似文献   

11.
Here we report on the analysis of two aquatic plant species, Azolla caroliniana and Lemna minor, with respect to tolerance and uptake of co-occurring arsenic, copper, and silicon for use in engineered wetlands. Plants were cultured in nutrient solution that was amended with arsenic (0 or 20 μM), copper (2 or 78 μM), and silicon (0 or 1.8 mM) either singly or in combination. We hypothesized that arsenic and copper would negatively affect the uptake of metals, growth, and pigmentation and that silicon would mitigate those stresses. Tolerance was assessed by measuring growth of biomass and concentrations of chlorophyll and anthocyanins. Both plant species accumulated arsenic, copper, and silicon; L. minor generally had higher levels on a per biomass basis. Arsenic negatively impacted A. caroliniana, causing a 30% decrease in biomass production and an increase in the concentration of anthocyanin. Copper negatively impacted L. minor, causing a 60% decrease in biomass production and a 45% decrease in chlorophyll content. Silicon augmented the impact of arsenic on biomass production in A. caroliniana but mitigated the effect of copper on L. minor. Our results suggest that mixtures of plant species may be needed to maximize uptake of multiple contaminants in engineered wetlands.  相似文献   

12.
辽东山区落叶松人工林地上生物量和养分元素分配格局   总被引:1,自引:1,他引:1  
闫涛  朱教君  杨凯  于立忠   《生态学杂志》2014,25(10):2772-2778
落叶松是我国北方最主要的人工用材林树种,由于人工林树种单一、结构简单等原因,导致土壤养分循环出现失衡.研究落叶松生物量和养分元素分配规律,可以为落叶松人工林的合理经营和养分循环研究提供科学参考.本文以辽东山区19年生二代落叶松人工林(胸径12.8 cm,树高15.3 m,密度2308株·hm-2)为对象,研究其地上各器官(干、枝、皮、叶)生物量、碳和养分元素含量(N、P、K、Ca、Mg、Fe、Mn、Cu、Zn)的积累规律和分配格局.结果表明:单株落叶松生物量为70.26 kg,林分水平落叶松生物量为162.16 t·hm-2,各器官生物量差异显著,排序为:树干>树枝>树皮>树叶;单株落叶松养分积累量为749.94 g,林分水平落叶松养分积累量为1730.86 kg·hm-2,其中,大量元素和微量元素的养分积累量均为树干显著高于树枝、树皮和树叶.全叶期每砍伐一棵落叶松(19年生),平均从系统中带出749.94 g养分元素;如果将树皮、树枝、树叶留在林地仅仅带走树干,带出的养分元素可减少40.7%.
  相似文献   

13.
Periphyton nutrient limitation was assessed in Lake Okeechobee, a large, shallow, eutrophic lake in the southeastern U.S.A. Nutrient assays were performed to determine if the same nutrients that limit phytoplankton also limit periphyton growth in the lake. Nutrient diffusing clay substrates containing agar spiked with nitrogen, phosphorus, or both, along with nutrient-free controls, were incubated at four sites in the lake. Three sites were located in a pelagic–littoral interface (ecotone) and one site was located in the interior littoral region. Incubations lasted for 20–26 days, and were repeated on a quarterly basis between 1996 and 1997, to incorporate seasonal variability into the experimental design. The physical and chemical conditions at each site also were measured. Periphyton biomass (chlorophyll a and ash-free dry mass) was highest at the littoral and northern ecotone sites. At the littoral site, nitrogen limited biomass in four of five incubations, although the largest biomass differences between the treatments and controls (3 g cm–2 as chl) were probably not ecologically significant. Periphyton biomass at the western and southern ecotone sites was low compared to the other two sites. Increases in water column depth and associated declines in light penetration strongly correlated with periphyton growth and suggested that they may have limited growth most often at all three ecotone sites. Nitrogen also was found to limit periphyton growth approximately 20% of the time at the ecotone sites and phosphorus was found to limit growth once at the west site.  相似文献   

14.
Question: Are changes in plant species composition, functional group composition and rates of species turnover consistent among early successional wetlands, and what is the role of landscape context in determining the rate of succession? Location: Twenty‐four restored wetlands in Illinois, USA. Methods: We use 4 years of vegetation sampling data from each site to describe successional trends and rates of species turnover in wetlands. We quantify: (1) the rate at which composition changes from early‐successional to late‐successional species and functional groups, as indicated by site movement in ordination space over time, and (2) the rate of change in the colonization and local extinction of individual species. We correlate the pace of succession to site area, isolation and surrounding land cover. Results: Some commonalities in successional trends were evident among sites. Annual species were replaced by clonal perennials, and colonization rates declined over time. However, differences among sites outweighed site age in determining species composition, and the pace of succession was influenced by a site's landscape setting. Rates of species turnover were higher in smaller wetlands. In addition, wetlands in agricultural landscapes underwent succession more rapidly, as indicated by a rapid increase in dominance by late‐successional plants. Conclusions: Although the outcome of plant community succession in restored wetlands was somewhat predictable, species composition and the pace of succession varied among sites. The ability of restoration practitioners to accelerate succession through active manipulation may be contingent upon landscape context.  相似文献   

15.
It is generally known that the water quality of shallow lakes can be influenced significantly by marginal wetlands. In order to study the efficacy of constructed littoral wetlands in the IJsselmeer area (The Netherlands) for water quality improvement, a field survey was carried out in 2003. Vegetation, soil, pore water and surface water characteristics were measured in spring and summer in two types of littoral zones: natural and constructed for 8–16 years. The study showed that constructed wetlands perform well and are suitable to enlarge the vegetated littoral zone in the IJsselmeer area. In both natural and constructed sites vegetation biomass varied between 2,200 g m−2 for helophyte vegetation and 1,300 g m−2 for low herbaceous vegetation. Nutrient concentrations in the pore water of constructed sites tended to be higher than in natural sites. and concentrations in pore water were much lower when vegetation was present, probably as a result of plant uptake. The N and P accumulation rate in the soil of constructed wetlands was 20 g N m−2 y−1 and 3 g P m−2 y−1 in vegetated plots; without vegetation the rate was much lower (8 g N m−2 y−1 and 1.8 g P m−2 y−1). We conclude that concerning their effect on water quality, constructed sites may replace natural sites, at least after 8–16 years. Principal component analysis showed a relationship between vegetation biomass and flooding, and nutrient concentrations in soil and pore water. Biomass was negatively correlated with extractable nutrients and positively with soil total N and P content. Flooding duration was negatively related to pore water salinity and positively to pore water nutrients. Due to their high biomass, helophyte stands retained significantly more nutrients than low pioneer vegetation and are therefore more suitable for improving water quality. Handling editor: S. Declerck  相似文献   

16.
干热河谷植物化学计量特征与生物量之间的关系   总被引:2,自引:0,他引:2       下载免费PDF全文
了解植物化学计量学特征对生物量变化的响应机制对预测全球变化下植物生产力以及生态系统功能具有重要意义。为了了解干热河谷地区植物化学计量学塑性变化与植物生物量变化的关系, 该研究以当地的典型燥红土为基质, 观察水分、养分以及二者的交互作用对6种植物的生长的促进作用, 并分析这种作用与植物化学计量学特征变化的关系。研究结果显示: 水分、养分、物种及其二元交互作用对植物生长具有显著的作用。养分添加处理增加了32.55%的生物量, 高频次水分处理增加了31.35%的生物量, 水分与养分复合处理下生物量增加了110.60%。植物化学计量学特征的变化与植物生物量对处理的响应具有显著相关性。其中, 植物总体K:Ca、K:Mg、K:Mn、K:Zn、Mg:Mn的变化与植物生物量的变化呈正相关关系, 表明水分和养分处理对植物生长的促进作用影响了植物养分的平衡, 主要的变化趋势是高含量元素与低含量元素的计量比随着生物量的增加而不断增加。此外, 相对于植物生物量变化, 处理类型和物种因素对多数化学计量学特征变化无显著影响, 表明水分和养分处理对化学计量学的影响具有相同的驱动机制, 即通过生物量变化最终影响化学计量学变化。植物生物量对水分和养分的响应可对植物化学计量学特征以及生态系统功能产生深远的影响。  相似文献   

17.
《植物生态学报》2015,39(8):807
Aims The micro-elemental stoichiometry as well as nitrogen (N) and phosphorus (P) plays an important role in ecosystem process. However, the drivers of the variations in these stoichiometric ratios in plants are less explored in compared with N and P. Plant productivity and plant stoichiometry can response simultaneously to environmental changes, such as water and nutrient supply levels. However, the relationships between the changes in plant stoichiometry and biomass were unclear yet although both of them play important roles in ecosystem functioning. Our object was to investigate the changes in plant stoichiometry (including multiple macro- and micro-elements) and in biomass under different nutrient and water supply. Methods We collected seeds from six grass species in an arid-hot valley and performed a nutrient-water addition experiment in 2012 with a complete factorial design (nutrient × water). The concentrations of N, P, K, Ca, Mg, Zn and Mn in different organs and plant biomass were measured. The effects of species, water and nutrient on element concentration and plant biomass were analyzed by three-way ANOVA. Linear regressions were used to test the relationships between changes in plant stoichiometry and changes in biomass after nutrient and water addition. Important findings Nutrient addition increased plant biomass by 32.55% compared with control. High-level water supply increased plant biomass by 31.35% and the combination of nutrient and high-level water addition increased plant biomass by 110.60%. Nutrient, water, species identity and their two-way interactions significantly affected plant biomass. Changes in total plant K:Ca, K:Mg, K:Mn, K:Zn and Mg:Mn were significantly and positively related to changes in plant biomass. The ratio between the concentrations of macro-elements and micro-elements tended to increase with biomass. Species identity and treatment had no effects in most of these relationships, suggesting that the changes in stoichiometry were mostly driven by the variations in biomass. The relationships between changes in stoichiometry and in biomass also occurred in leaves, stems and roots. The covariation between plant stoichiometry and biomass can have profound effects on ecosystem functioning under the global environmental changes.  相似文献   

18.
Phenotypic variation within species is widespread among salt marsh plants. For Spartina alterniflora, the dominant species of low intertidal wetlands across the Altantic and Gulf coasts of the US, distinct phenological and morphological differences among populations from different latitudes have been found. To determine whether S. alterniflora plants from lower latitudes and those regenerated from Delaware tissue cultures would maintain differences from that of native plants, we conducted a field study in a natural salt marsh in Delaware, US. After two growing seasons, plant height, stem density, above- and belowground biomass, elemental composition, and nutrient resorption were measured. Natural variation in porewater salinity influenced physiological traits of Na+/K+ ratio regulation and nitrogen resorption efficiency similarly across populations. While plant height exhibited plasticity where populations tended to converge to a similar height, several other traits remained distinct. Delaware plants had a greater rate of rhizome growth than Georgia and Louisiana plants, which correlated with a greater magnitude of fall senescence. If traits such as seasonal translocation are plastic and can change with the length of the growing season, climate warming may alter belowground biomass production of S. alterniflora in wetlands of the mid-Atlantic.  相似文献   

19.
Engineered wetlands can be an integral part of a treatment strategy for remediating arsenic-contaminated wastewater, wherein, As is removed by adsorption to soil particles, chemical transformation, precipitation, or accumulation by plants. The remediation process could be optimized by choosing plant species that take up As throughout the seasonal growing period. This report details experiments that utilize wetland plant species native to Ohio (Carex stricta, Pycnanthemum virginianum, and Spartina pectinata) that exhibit seasonally related maximal growth rates, plus one hyperaccumulating fern (Pteris vittata) that was used to compare arsenic tolerance. All plants were irrigated with control or As-laden nutrient solutions (either 0, 1.5, or 25 mg As L?1) for 52 d. Biomass, nutrient content, and chlorophyll content were compared between plants treated and control plants (n = 5). At the higher concentration of arsenic (25 mg L?1), plant biomass, leaf area, and total chlorophyll were all lower than values in control plants. A tolerance index, based on total plant biomass at the end of the experiment, indicated C. stricta (0.99) and S. pectinata (0.84) were more tolerant than the other plant species when irrigated with 1.5 mg As L?1. These plant species can be considered as candidates for engineered wetlands.  相似文献   

20.
Nutrient resorption from senescing tissues increases plant nutrient-use efficiency, and may be an adaptation to nutrient limitation. In some tree species, retranslocation of nutrients from sapwood during heartwood formation is a comparable process. We measured Ca, Mg and K concentrations in Atlantic white cedar (Chamaecyparis thyoides) stemwood samples taken from two swamps in the northeastern United States and compared them to soil mineral nutrient availability at each site. We found that Ca, Mg and K concentrations were 60–700% higher in sapwood than in the immediately adjacent heartwood, indicating retranslocation of these nutrients from senescing sapwood. Sapwood nutrient concentrations were similar between the two sites. However, nutrient concentrations in the heartwood differed significantly between the sites, as did the relative degree of Ca and Mg retranslocation from senescing sapwood. We found these differences between sites to be inversely related to significant differences in exchangeable Ca, Mg and K as well as Al concentrations in the soil. These findings suggest that the degree of nutrient retranslocation from senescing sapwood may be influenced by soil nutrient availability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号