首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
栽培青蒿中总黄酮提取工艺   总被引:2,自引:0,他引:2  
利用超声波辅助技术,获得最大限度提取青蒿中总黄酮的新工艺。用正交设计理论,结合分光光度法,优化超声波辅助醇提法提取青蒿总黄酮工艺中的关键技术参数。最佳提取.工艺为:超声波频率59kHz,乙醇体积分数60%,提取时间40min,料液比1:40。超声波辅助提取法能够实现青篙中总黄酮的高效提取,产率达1.497%。  相似文献   

2.
3.
Shih CH  Chu H  Tang LK  Sakamoto W  Maekawa M  Chu IK  Wang M  Lo C 《Planta》2008,228(6):1043-1054
Rice is a model system for monocot but the molecular features of rice flavonoid biosynthesis have not been extensively characterized. Rice structural gene homologs encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) were identified by homology searches. Unique differential expression of OsF3H, OsDFR, and OsANS1 controlled by the Pl w locus, which contains the R/B-type regulatory genes OSB1 and OSB2, was demonstrated during light-induced anthocyanin accumulation in T65-Plw seedlings. Previously, F3H genes were often considered as early genes co-regulated with CHS and CHI genes in other plants. In selected non-pigmented rice lines, OSB2 is not expressed following illumination while their expressed OSB1sequences all contain the same nucleotide change leading to the T64 M substitution within the conserved N-terminal interacting domain. Furthermore, the biochemical roles of the expressed rice structural genes (OsCHS1, OsCHI, OsF3H, and OsF3′H) were established in planta for the first time by complementation in the appropriate Arabidopsis transparent testa mutants. Using yeast two-hybrid analysis, OsCHS1 was demonstrated to interact physically with OsF3H, OsF3′H, OsDFR, and OsANS1, suggesting the existence of a macromolecular complex for anthocyanin biosynthesis in rice. Finally, flavones were identified as the major flavonoid class in the non-pigmented T65 seedlings in which the single-copy OsF3H gene was not expressed. Competition between flavone and anthocyanin pathways was evidenced by the significant reduction of tricin accumulation in the T65-Plw seedlings. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
《Gene》1996,172(2):207-209
A cDNA encoding farnesyl diphosphate (FPP) synthase (FPPS) has been cloned from a cDNA library of Artemisia annua. The sequence analysis showed that the cDNA encoded a protein of 343 amino acid (aa) residues with a calculated molecular weight of 39 420 kDa. The deduced aa sequence of the cDNA was highly similar to FPPS from other plants, yeast and mammals, and contained the two conserved domains found in polyprenyl synthases including FPPS, geranylgeranyl diphosphate synthases and hexaprenyl diphosphate synthases. The expression of the cDNA in Escherichia coli showed enzyme activity for FPPS in vitro.  相似文献   

5.
6.
Summary Artemisinin is a sesquiterpene lactone isolated from the aerial parts of Artemisia annua L. plants. Besides being currently the best therapeutic against both drug-resistant and cerebral malaria-causing strains of Plasmodium falciparum, the drug has also been shown to be effective against other infections diseases including schistosomiasis and hepatitis. More recently, it has also been shown to be effective against numerous types of tumors. Although chemical synthesis of artemisinin is possible, it is not economically feasible. The relatively low yield (0.01–0.8%) of artemisinin in A. annua is a further serious limitation to the commercialization of the drug. Therffore, the enhanced production of artemisinin either in cell/tissue culture or in the whole plant of A. annua is highly desirable. A better understanding of the biochemical pathway leading to the synthesis of artemisinin and its regulation by both exogenous and endogenous factors is essential for facilitating increased yield. Two genes of the artemisinin biosynthetic pathway have now been identified. This critical review covers recent developments related to the biosynthesis of this important compound and related terpenoids, their regulation, and the production of these compounds both in vitro and in whole plants.  相似文献   

7.
Tetraploid Artemisia annua plants were successfully inducted by using colchicine, and their ploidy was confirmed by flow cytometry. Higher stomatal length but lower frequency in tetraploids were revealed and could be considered as indicators of polyploidy. The average level of artemisinin in tetraploids was increased from 39% to 56% than that of the diploids during vegetation period, as detected by high-performance liquid chromatography-evaporative light scattering detector. Gene expressions of 10 key enzymes related to artemisinin biosynthetic pathway in different ploidy level were analyzed by semiquantitative polymerase chain reaction and significant upregulation of FPS, HMGR, and artemisinin metabolite-specific Aldh1 genes were revealed in tetraploids. Slight increased expression of ADS was also detected. Our results suggest that higher artemisinin content in tetraploid A. annua may result from the upregulated expression of some key enzyme genes related to artemisinin biosynthetic pathway.  相似文献   

8.
9.
Sesquiterpene cyclases (synthases) catalyze the conversion of the isoprenoid intermediate farnesyl diphosphate to various sesquiterpene structural types. In plants, many sesquiterpenes are produced as defensive chemicals (phytoalexins) or mediators of chemical communication (i.e., pollinator attractants). A number of sesquiterpene synthases are present in Artemisia annua L. (annual wormwood). We have isolated a cDNA clone encoding one of these, epi-cedrol synthase. This clone contains a 1641-bp open reading frame coding for 547 amino acids (63.5 kDa), a 38-bp 5'-untranslated end, and a 272-bp 3'-untranslated sequence. The deduced amino acid sequence was 32 to 43% identical with the sequences of other known sesquiterpene cyclases from angiosperms. When expressed in Escherichia coli, the recombinant enzyme catalyzed the formation of both olefinic (3%) and oxygenated (97%) sesquiterpenes from farnesyl diphosphate. GC-MS analysis identified the olefins as alpha-cedrene (57% of the olefins), beta-cedrene (13%), (E)-beta-farnesene (5%), alpha-acoradiene (1%), (E)-alpha-bisabolene (8%), and three unknown olefins (16%) and the oxygenated sesquiterpenes (97% of total sesquiterpene generated, exclusive of farnesol and nerolidol) as cedrol (4%) and epi-cedrol (96%). epi-Cedrol synthase was not active with geranylgeranyl diphosphate as substrate, whereas geranyl diphosphate was converted to monoterpenes by the recombinant enzyme at a rate of about 15% of that observed with farnesyl diphosphate as substrate. The monoterpene olefin products are limonene (45%), terpinolene (42%), gamma-terpinene (8%), myrcene (5%), and alpha-terpinene (2%); a small amount of the monoterpene alcohol terpinen-4-ol is also produced. The pH optimum for the recombinant enzyme is 8.5-9.0 (with farnesyl diphosphate as substrate) and the K(m) values for farnesyl diphosphate are 0.4 and 1.3 microM at pH 7. 0 and 9.0, respectively. The K(m) for Mg(2+) is 80 microM at pH 7.0 and 9.0.  相似文献   

10.
Alkylresorcinol moieties of cannabinoids are derived from olivetolic acid (OLA), a polyketide metabolite. However, the polyketide synthase (PKS) responsible for OLA biosynthesis has not been identified. In the present study, a cDNA encoding a novel PKS, olivetol synthase (OLS), was cloned from Cannabis sativa. Recombinant OLS did not produce OLA, but synthesized olivetol, the decarboxylated form of OLA, as the major reaction product. Interestingly, it was also confirmed that the crude enzyme extracts from flowers and rapidly expanding leaves, the cannabinoid-producing tissues of C. sativa, also exhibited olivetol-producing activity, suggesting that the native OLS is functionally expressed in these tissues. The possibility that OLS could be involved in OLA biosynthesis was discussed based on its catalytic properties and expression profile.  相似文献   

11.
12.
13.
米蒿(Artemisia dalai-lamae)、冷蒿(Artemisia frigida)和臭蒿(Artemisia hedinii)作为西北干旱半干旱地区常见植物,具有防风固沙、阻止草原退化、杀菌消炎和治疗多种疾病的功效。通过Illumina测序技术分别对3种蒿属植物进行转录组测序和分析,分别获得54 268 322,46 434 864和43 971 646条Clean reads,并对测序结果进行了SNP和可变剪接分析。在米蒿和冷蒿对比组(ADL vs AF)中筛选到6 107个差异基因,在米蒿和臭蒿对比组(ADL vs AH)中筛选到4 822个差异基因,在冷蒿和臭蒿对比组(AF vs AH)中筛选到3 755个差异基因。GO富集将差异基因注释到生物过程、细胞组成和分子功能这3个类别共47个条目。KEGG代谢通路分析将3个对比组的差异基因分别富集到198、198和197条通路。对每个对比组的前10个高表达差异基因进行了分析,并筛选出25个生物碱、萜类和类黄酮的活性成分可能相关的差异基因。本研究为蒿属植物的物种鉴定、抗逆性研究和资源利用提供一定的科学依据。  相似文献   

14.
Genes involved in flavonoid and stilbene biosynthesis were isolated from grape (Vitis vinifera L.). Clones coding for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydoxylase (F3H), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX) and UDP glucose:flavonoid 3-O-glucosyl transferase (UFGT), were isolated by screening a cDNA library, obtained from mRNA from seedlings grown in light for 48 h using snapdragon (Antirrhinum majus) and maize heterologous probes. A cDNA clone coding for stilbene synthase (StSy) was isolated by probing the library with a specific oligonucleotide. These clones were sequenced and when the putative products were compared to the published amino acid sequence for corresponding enzymes, the percentages of similarity ranged from 65% (UFGT) to 90% (CHS and PAL). The analysis of the genomic organization and expression of these genes in response to light shows that PAL and StSy genes belong to large multigene families, while the others are present in one to four copies per haploid genome. The steady-state level of mRNAs encoded by the flavonoid biosynthetic genes as determined in young seedlings is coordinately induced by light, except for PAL and StSy, which appear to be constitutively expressed.  相似文献   

15.
Artemisia annua, an indigenous plant to Korea, contains an antimalarial sesquiterpene, artemisinin. The first committed step of artemisinin biosynthesis is the cyclization of farnesyl diphosphate by a sesquiterpene synthase to produce an amorphane-type ring system. The aims of this research were to molecularly clone and express amorpha-4,11-diene synthase for metabolic engineering. PCR amplification of genomic DNA with a pair of primers, designed from the conserved regions of sesquiterpene synthases of several plants, produced a 184-bp DNA fragment. This fragment was used in Northern blot analysis as a probe, showing approximately 2.2 kb of a single band. Its sequence information was used to produce 2106 bp of a full-length cDNA sequence including 1641 bp of open reading frame for 546 amino acids (kcs12) through a rapid amplification of cDNA ends (RACE). The deduced amino acid sequence displayed 36% identity with 5-epi-aristolochene synthase of Nicotiana tabacum. A soluble fraction of Escherichia coli harboring kcs12 catalyzed the cyclization of farnesyl diphosphate to produce a sesquiterpene, which was identified through GC-MS analysis as amorpha-4,11-diene.  相似文献   

16.
A cDNA clone encoding amorpha-4,11-diene synthase from Artemisia annua was subcloned into a bacterial expression vector in frame with a His6-tag. Recombinant amorpha-4,11-diene synthase was produced in Escherichia coli and purified to apparent homogeneity. The enzyme showed pH optimum at pH 6.5, and a minimum at pH 7.5. Substantial activity was observed in the presence of Mg2+, Mn2+ or Co2+ as cofactor. The enzyme exhibits a low activity in the presence of Ni2+ and essentially no activity with Cu2+ or Zn2+. The sesquiterpenoids produced from farnesyl diphosphate in the presence of Mg2+ were analyzed by GC-MS. In addition to amorpha-4,11-diene, 15 sesquiterpenoids were produced. Only small quantitative differences in product pattern were observed at pH 6.5, 7.5, or 9.5. Amorpha-4,11-diene synthase showed significant increased product selectivity in the presence of Mn2+ or Co2+. Km for farnesyl diphosphate was 3.3, 8.0, and 0.7 microM in the presence of Mg2+, Mn2+ or Co2+, respectively. The corresponding kcat-values were 6.8, 15.0, and 1.3 x 10(-3) s(-1), respectively. Km and kcat for geranyl diphosphate were 16.9 microM and 7.0 x 10(-4) s(-1), respectively, at pH 6.5, in the presence of Mn2+.  相似文献   

17.
In plants, sesquiterpenes of different structural types are biosynthesized from the isoprenoid intermediate farnesyl diphosphate. The initial reaction of the biosynthesis is catalyzed by sesquiterpene cyclases (synthases). In Artemisia annua L. (annual wormwood), a number of such sesquiterpene cyclases are active. We have isolated a cDNA clone encoding one of these, amorpha-4,11-diene synthase, a putative key enzyme of artemisinin biosynthesis. This clone contains a 1641-bp open reading frame coding for 546 amino acids (63.9 kDa), a 12-bp 5'-untranslated end, and a 427-bp 3'-untranslated sequence. The deduced amino acid sequence is 32 to 51% identical with the sequence of other known sesquiterpene cyclases from angiosperms. When expressed in Escherichia coli, the recombinant enzyme catalyzed the formation of both olefinic (97.5%) and oxygenated (2.5%) sesquiterpenes from farnesyl diphosphate. GC-MS analysis identified the olefins as (E)-beta-farnesene (0.8%), amorpha-4,11diene (91.2%), amorpha-4,7(11)-diene (3.7%), gamma-humulene (1.0%), beta-sesquiphellandrene (0.5%), and an unknown olefin (0.2%) and the oxygenated sesquiterpenes as amorpha-4-en-11-ol (0.2%) (tentatively), amorpha-4-en-7-ol (2.1%), and alpha-bisabolol (0.3%) (tentatively). Using geranyl diphosphate as substrate, amorpha-4,11-diene synthase did not produce any monoterpenes. The recombinant enzyme has a broad pH optimum between 7.5 and 9.0 and the Km values for farnesyl diphosphate, Mg2+, and Mn2+ are 0.9, 70, and 13 microM, respectively, at pH 7.5. A putative reaction mechanism for amorpha-4,11-diene synthase is suggested.  相似文献   

18.
19.
Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles   总被引:1,自引:0,他引:1  
Aureusidin synthase, a polyphenol oxidase (PPO), specifically catalyzes the oxidative formation of aurones from chalcones, which are plant flavonoids, and is responsible for the yellow coloration of snapdragon (Antirrhinum majus) flowers. All known PPOs have been found to be localized in plastids, whereas flavonoid biosynthesis is thought to take place in the cytoplasm [or on the cytoplasmic surface of the endoplasmic reticulum (ER)]. However, the primary structural characteristics of aureusidin synthase and some of its molecular properties argue against localization of the enzyme in plastids and the cytoplasm. In this study, the subcellular localization of the enzyme in petal cells of the yellow snapdragon was investigated. Sucrose-density gradient and differential centrifugation analyses suggested that the enzyme (the 39-kDa mature form) is not located in plastids or on the ER. Transient assays using a green fluorescent protein (GFP) chimera fused with the putative propeptide of the PPO precursor suggested that the enzyme was localized within the vacuole lumen. We also found that the necessary information for vacuolar targeting of the PPO was encoded within the 53-residue N-terminal sequence (NTPP), but not in the C-terminal sequence of the precursor. NTPP-mediated ER-to-Golgi trafficking to vacuoles was confirmed by means of the co-expression of an NTPP-GFP chimera with a dominant negative mutant of the Arabidopsis GTPase Sar1 or with a monomeric red fluorescent protein (mRFP)-fused Golgi marker (an H+-translocating inorganic pyrophosphatase of Arabidopsis). We identified a sequence-specific vacuolar sorting determinant in the NTPP of the precursor. We have demonstrated the biosynthesis of a flavonoid skeleton in vacuoles. The findings of this metabolic compartmentation may provide a strategy for overcoming the biochemical instability of the precursor chalcones in the cytoplasm, thus leading to the efficient accumulation of aurones in the flower.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号