首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clonal growth occurring below the ground makes it difficult to identify individuals and demonstrate the demographic features of a focal plant species. In this study, genotypically identified ramets of a rhizomatous clonal herb, Convallaria keiskei Miq., were monitored for their growth, survival, and reproduction from 2003 to 2006. After the monitoring period, their subterranean organs were excavated to explore the underground connections of established ramets and the direction of clonal growth. We then combined data on the fate of the monitored ramets with the information of rhizome connections, clarifying reproductive demography at both the ramet and genet levels. Although each ramet initiated both sexual reproduction (via flowering) and clonal growth, clonal growth tended to precede sexual reproduction. In a surveyed genet, 51.0% of ramets produced flowers and 29.6% generated clonal offspring during the study period. Consequently, we clarified the reproductive demography of C. keiskei: clonal growth tended to precede flowering in a ramet, and a genet can keep reproducing every season at the genet level, despite a ramet not having inflorescence every year.  相似文献   

2.
放牧干扰对根茎冰草无性系种群年龄结构的影响   总被引:17,自引:0,他引:17       下载免费PDF全文
根茎冰草(Agropyron michnoi)是典型的无性系禾草。在松嫩平原,根茎冰草的分蘖节最老为4龄,可存活5个年度。不同季节的放牧干扰可导致根茎冰草无性系种群分蘖株的年龄结构发生变化,全年放牧样地和夏秋休牧样地均为稳定型年龄结构,两个冬季放牧样地均为增长型年龄结构。1龄分蘖株的生产力和营养繁殖力力均最大。4龄分蘖株均已丧失了营养繁殖力。营养繁殖芽的年龄结构可以更好地预测预报无性系种群和群落的未来。全年放牧可保护稳定型年龄结构,冬季放牧可保持增长型年龄结构,夏秋休牧可使种群发展为增长型年龄结构,两个冬季放牧样地将仍然保持单优势种群落,全年放牧地将仍为混生群落,夏季林牧样地具有向着单优势种群落演替的潜在趋势。  相似文献   

3.
The physiological organisation of plants is considered in relation to the carbon economy of plant parts. Although assimilate is partitioned according to the relative strength of sinks, in many species there is also a very close relationship between partitioning and shoot phyllotaxy, giving rise to sectorial patterns of allocation whereby only certain sinks are supported by any source leaf. Essentially these sinks are in the same orthostichy as the source leaf. This constraint of the vascular architecture on assimilate distribution to developing sinks such as leaves, flowers and fruits is not always absolute, as following the loss of their principal source leaves these sinks can in many cases be supplied with assimilate by other leaves via new inter-orthostichy pathways. The supply of assimilate to major sinks such as developing fruits becomes more and more localised with time so that a fruit in an axillary position becomes largely supported by its subtending leaf; the reproductive node—a metamer-can thus be regarded as a relatively autonomous unit of the plant (an IPU). Similary, once established after a developmental phase of assimilate import, tiller ramets and branches in unitary plants tend to become physiologically autonomous modules. However, the functional autonomy of tillers is reversed following defoliation or shading as they are then sustained by the import of assimilate, subject to its availability, from unaffected tillers. Consequently the plant becomes physiologically integrated by the flow of assimilate from one part to another. The mainly autonomous ramets of many stoloniferous and rhizomatous species display a similar pattern of physiological integration in response to source manipulation, but in some species the ramets appear to maintain their independent functioning as a normal feature of the carbon allocation within the clone. In other clonal species, as the clone develops and becomes more structurally complex, vascular constraints start to restrict the movement of resources, and the clone becomes composed of a number of semi-autonomous IPUs. In unitary plants branches appear to remain very physiologically isolated in terms of their carbon economy once they become established, irrespective of a range of source-sink manipulations.These different patterns of physiological integration and organisation are discussed in relation to different strategies of assimilate utilisation and conservation.  相似文献   

4.
松嫩平原野大麦无性系分蘖株的年龄结构   总被引:14,自引:9,他引:14  
野大麦无性系分蘖株由3个龄级组成,为明显的增长型年龄结构、1龄级蘖在无性系生殖生长中占绝对优势。分蘖株龄级越高,其数量增长速率越小,对无性系物质积累的贡献越小,1、2龄级分蘖株数量和生物量均随着无性系丛径和总蘖数的增加而增长,3龄级蘖与总蘖数间呈直线相关。平均单蘖生产力随着龄级增加而下降。生殖蘖平均单蘖重具有相对稳定性。无性系中1龄级蘖平均单蘖重体现出一定的密度调节作用,无性系潜在种群也为明显的增  相似文献   

5.
松嫩平原赖草无性系生长及其构件的年龄结构   总被引:10,自引:3,他引:7  
杨允菲  张宝田 《应用生态学报》2004,15(11):2109-2112
赖草是长根茎型禾草,是典型的无性系植物.在松嫩平原栽培条件下,移植第1年的赖草无性系,经过一个完整生长季的营养繁殖,最多可形成215个分蘖株,在4个取样的无性系中,最大的无性系是最小的5.4倍;经过2个完整生长季最多可形成2852个分蘖株,最大为最小的2.7倍.在无性系整体水平上,2个年度间无性系扩展面积平均增长了13.2倍,分蘖株平均增长了13.3倍,根茎的累积长度平均增长了15.9倍,根茎节数平均增长了11.2倍,根茎生物量平均增长了14.7倍.无性系分蘖株由2个龄级组成,呈增长型年龄结构,并且随着无性系的生长,其增长型年龄结构更为明显.无性系的芽库均由3个龄级组成,亦呈增长型年龄结构,但随着无性系的生长,其增长型年龄结构趋于减缓.赖草无性系以形成大量的根茎顶端芽和根茎节间芽发育成分蘖株,实现无性系空间生态位的扩展和持续更新.  相似文献   

6.
We surveyed the bud demography ofLeymus chinensis L plants along a soil-moisture gradient that was caused by a flood in 1998 on the Song-nen Plain in northeastern China. The number of vegetative buds per ramet was influenced by soil water content, with regression curves being quadratic and the opening of the parabola pointing downward. In addition, the optimum regression models for the numbers of rhizomatous buds and tiller buds relative to soil water resulted in a quadratic parabola and exponential curve, respectively. Vegetative buds flourished between August and October, with plants producing more of those buds on flooded plots than on control sites. The number of rhizomatous buds per ramet was much higher than for tiller buds throughout most of the growing season, and production of the former was more apt to be affected by soil water status. This observed superiority of rhizomatous bud production was thought to be a consequence of the whole-plant adjustment that was stimulated by an abnormally high moisture content. It could also be interpreted as a strategy for “escape” from disadvantageous overly wet conditions. Moreover, the position-based preference for bud emergence along the ramets could be an underlying mechanism for selective ramet placement.  相似文献   

7.
野大麦属短根茎丛生型禾草,是典型的无性系植物.在松嫩平原生长季末期。野大麦无性系分株由抽茎的分蘖株和莲座状分蘖苗组成.按照分蘖节营养繁殖世代的龄级划分方法,建植2年人工草地野大麦无性系的分蘖株由3个龄级组成,分蘖苗由4个龄级组成,其生物量均呈增长型的龄级结构.在野大麦无性系的物质生产中,无论是分蘖株,还是分蘖苗,均以1龄级的单蘖生产力最高,并随着龄级的增高呈不同程度的下降.丛径是衡量野大麦无性系空间大小的重要数量指标.分株数量是衡量野大麦无性系生长的重要数量指标.经统计分析,野大麦无性系的分蘖株生物量、分蘖苗生物量、根茎生物量、总生物量分别与丛径和总分株数量之间均有极密切的正相关关系,其相关程度最佳的均为幂函数,其相关性均达到极显著水平(P<0.01).这些相同的函数变化表明,随无性系的空间扩展和数量增长,各构件具有相同的物质生产与积累规律.  相似文献   

8.
Clonal plant species can be considered as populations of interconnected ramets which are basically identical in form and function, and potentially independent from each other. Experimental studies and field observations suggest that an intra-clonal specialization of ramets with different roles (division of labour) can increase the performance of clonal systems under heterogeneous conditions. This paper explores structural and functional variation in the emergent macrophyte Scirpus maritimus, which forms ramets that specialize in three main activities: sexual reproduction, photosynthetic assimilation and vegetative growth, and reserve storage. The main question asked in this study is whether such specialization is a developmentally programmed syndrome in this species, and whether environmental conditions can alter the pattern of ramet differentiation along rhizome systems.We analyzed clonal fragments collected from a population in the field, and grew clones individually in pots of two sizes to simulate different degrees of crowding and shoot density. Specialization of ramets was largely predictable from their position along the rhizome system, indicating that specialization is an inherent feature (developmentally programmed) of clone ontogeny in S. maritimus. In the field, sexual ramets were always situated at the base of rhizome systems, vegetative ramets were in first and intermediate positions, and shoot-less storage ramets were almost always formed distally on rhizomes (terminal ramets). In the pot experiment flowering ramets were observed in all positions along rhizome systems, suggesting that specialization for sexual reproduction shows a plastic response to environmental conditions.S. maritimus can adjust the relative numbers of ramets with and without above-ground shoots when grown in different shoot densities, i.e. the frequency of individual ramets responsible for a certain functional or developmental process can be adjusted to environmental conditions and internal needs. In S. maritimus, the density-dependant regulation of storage versus vegetative growth and sexual reproduction may represent a mechanism to limit shoot competition in crowded populations.  相似文献   

9.
BACKGROUND AND AIMS: To improve the management of grass communities, early plant development was compared in three species with contrasting growth forms, a caespitose (Lolium perenne), a rhizomatous (Poa pratensis) and a caespitose-stoloniferous species (Agrostis stolonifera). METHODS: Isolated seedlings were grown in a glasshouse without trophic constraints for 37 d (761 degrees Cd). The appearance of leaves and their location on tillers were recorded. Leaf appearance rate (LAR) on the tillers and site-filling were calculated. Tillering was modelled based on the assumption that tiller number increases with the number of leaves produced on the seedling main stem. Above- and below-ground parts were harvested to compare biomass. KEY RESULTS: Lolium perenne and A. stolonifera expressed similar bunch-type developments. However, root biomass was approx. 30 % lower in A. stolonifera than in L. perenne. Poa pratensis was rhizomatous. Nevertheless, the ratio of above-ground : below-ground biomass of P. pratensis was similar to that of L. perenne. LAR was approximately equal to 0.30 leaf d(-1) in L. perenne, and on the main stem and first primary tillers of A. stolonifera. LAR on the other tillers of A. stolonifera was 30 % higher than on L. perenne. For P. pratensis, LAR was 30 % lower than on L. perenne, but the interval between the appearance of two successive shoots from rhizomes was 30 % higher than the interval between two successive leaf stages on the main stem. Above-ground parts of P. pratensis first grew slower than in the other species to the benefit of the rhizomes, whose development enhanced tiller production. CONCLUSIONS: Lolium perenne had the fastest tiller production at the earliest stages of seedling development. Agrostis stolonifera and P. pratensis compensated almost completely for the delay due to higher LAR on tillers or ramets compared with L. perenne. This study provides a basis for modelling plant development.  相似文献   

10.
不同程度的沙埋是生长在干旱和半干旱区内陆沙丘的植物经常遭遇的事件,沙埋可以改变植物所处的生物和非生物环境条件。已有研究表明不同程度的沙埋对于植物的影响不同。轻微程度的沙埋可以增加植物高度、促进生物量的积累和新生分株的产生。如果沙埋强度不断增加,对植物的影响由正效应逐渐转变为负效应。即超过一定沙埋阈值后,沙埋会削弱植物的生长,甚至影响植物的存活。干旱和半干旱区内陆沙丘中常常生长着许多克隆植物,克隆整合常常可以缓解克隆植物分株所遭受的局部环境胁迫。根茎型克隆植物羊柴(Hedysarum laeve)是毛乌素沙地的优势半灌木之一,也是当地重要的固沙植物。为了探讨克隆整合的作用是否可以提高沙埋阈值,并有助于羊柴忍受高强度的沙埋,以其为研究对象开展了野外实验。结果表明:轻微程度的沙埋(例如沙埋深度是原始羊柴分株高的10%~20%)可以加速羊柴分株的高生长,提高叶片生物量、茎生物量以及整个地上部分的生物量。高强度的沙埋(例如沙埋深度是原始羊柴分株高的80%~100%)会削弱羊柴分株的存活和生长。在与不遭受沙埋分株相连的情况下,羊柴分株遭受沙埋的阈值高于没有分株相连的,而且在高强度的沙埋下,前者(有分株相连的遭受沙埋的分株)比后者(没有分株相连的遭受沙埋的分株)在株高增量、茎生物量、叶片生物量以及地上分株生物量上都要显著高。这暗示着克隆整合提高了羊柴遭受沙埋的阈值并有助于羊柴分株忍受高强度的沙埋。  相似文献   

11.
In arid and semi-arid sand dune ecosystems, belowground bud bank plays an important role in population regeneration and vegetation restoration. However, the responses of belowground bud bank size and composition to sand burial and its induced changes in soil environmental factors have been rarely studied. In arid sand dunes of Northwestern China, we investigated belowground bud bank size and composition of the typical rhizomatous psammophyte Psammochloa villosa as well as three key soil environmental factors (soil moisture, total carbon and total nitrogen) under different depths of sand burial. Total buds and rhizome buds increased significantly with increasing burial depth, whereas tiller buds first increased and then decreased, with a peak value at the depth of 20–30 cm. Soil moisture increased significantly with sand burial depth, and was positively correlated with the number of all buds and rhizome buds. Soil total carbon concentration first increased and then decreased with sand burial depth, and total nitrogen concentration was significantly lower under deep sand burial than those at shallow depths, and only the number of tiller buds was positively correlated with soil total nitrogen concentration. These results indicate that soil moisture rather than soil nutrient might regulate the belowground bud bank of P. villosa, and that clonal psammophytes could regulate their belowground bud bank in response to sand burial and the most important environmental stress (i.e., soil moisture). These responses, as the key adaptive strategy, may ensure clonal plant population regeneration and vegetation restoration in arid sand dunes.  相似文献   

12.
In arid and semi-arid inland deserts,one of the environmental stresses for plants is recurrent sand burial,which can influence the physical and biotic microenvironments of the plants and soil.Previous studies have shown that different levels of sand burial have different effects on plants.Slight sand burial could increase the height increment,leaf biomass and the number of new ramets of the plants while heavy sand burial could impair the growth of the plants and even decrease their chances of survival.In other words,below a certain threshold level of burial,the growth of plants is stimulated probably because of multiple factors.However,as the level of burial increases,the positive response starts to decline until it becomes a negative value.Arid and semi-arid inland deserts are frequently colonized and stabilized by many rhizomatous clonal plants.Clonal physiological integration often helps clonal plants buffer local environmental stress encountered by ramets.A rhizomatous clonal semishrub,Hedysarum laeve (H.laeve),is the dominant plant species and important for vegetation restoration in the Mu Us sandland.To investigate whether clonal integration can increase the threshold of sand burial and help rhizomatous H.laeve tolerate heavy sand burial,we conducted a field experiment.The results showed that slight sand burial could accelerate ramet growth and enhance leaf biomass,stem biomass and shoot biomass,while heavy sand burial reducesed the biomass of the plant and impairs survival and growth of the ramets.Clonal integration increased the threshold of sand burial.Under heavy sand burial,ramets connected to other ramets not buried in sand were more in terms of height increment,stem biomass,leaf biomass and shoot biomass compared to the ramets encountering sand burial but disconnected from other ramets.It suggested that clonal physiological integration could help H.laeve ramets tolerate relatively heavy sand burial.We also discussed that clonal integration plays a role in H.laeve presence in the Mu Us sandland.  相似文献   

13.
松嫩平原两个趋异类型羊草无性系种群特征的比较研究   总被引:10,自引:0,他引:10  
松嫩平原上羊草(Leymus chinensis(Tzvel.)Tzvel.)有两个趋异类型:灰绿型和黄绿型。两个类型羊草的分蘖节一般均存活2~4年,最多可存活5年;根茎一般存活2~3年,最多可存活4年。两个类型无性系种群的分蘖株均为增长型的年龄结构类型。种群根茎的累积长度,灰绿型为18035cm/m~2,黄绿型为21218cm/m~2,其中,均以1、2龄占绝对比重。两个类型均以1龄分蘖株生产力最大,至3龄分蘖株明显减小;各龄根茎的生物量随着年龄的增加呈直线下降;1龄根茎的营养繁殖力甚强,至8月中旬所形成的芽数均已远远多于地上全部分蘖株数;2龄根茎尚存在较小的营养繁殖潜力,3、4龄根茎均已丧失了营养繁殖力。两个类型羊草无性系种群都是通过根茎芽补充更新。  相似文献   

14.
We investigated clonal traits in the dioecious herb Rumex acetosella to characterize sexual dimorphism in clonal forms and to correlate below-ground clonal patterns and above-ground ramet distributions. We recorded creeping root length, branching patterns, ramet and clump (caespitose ramets from the same position on the root) sprouting patterns, and biomass allocations in three females and males. We also estimated the patch size of flowering ramets within a quadrat. No sexual dimorphism was detected in the frequencies of branches and flowering ramets per root length. Male plants allocated proportionally more biomass to below-ground organs. Total root length did not differ between the sexes. Females sprouted more clumps with fewer flowering ramets per root length than males, which sprouted fewer clumps with more flowering ramets, which meant that clump sprouting patterns were phalanx-like in females and guerrilla-like in males. Flowering ramets were aggregately distributed in both females and males and patch sizes were similar between sexes, indicating that the spreader propagations were not found in the guerrilla-like males. We assumed that sexual dimorphism occurred in response to physiological integration for higher reproductive effort in females.  相似文献   

15.
松嫩平原栽培条件下羊草无性系构件的结构   总被引:11,自引:0,他引:11  
羊草是长根茎型禾草,是典型的无性系植物,在松嫩平原的生长季末期,栽培条件下羊草无性系分株由分蘖株和分蘖苗组成,在具有充分生长空间而又没有种间竞争的风沙土上,羊草分株的分蘖节在一个生长季内可以繁殖4个世代,按分蘖节的繁殖世代划分龄级,现实与潜在无性系构件的年龄谱均以1龄级比重最大,随着龄级的增加明显减少,呈增长型的年龄结构,羊草无性系分株的生产力主要与分株形成及生长的时间长短有关,形成时间越早、生长时间越长的分蘖株对无性系的物质生产和营养繁殖的贡献越大,羊草无性系在空间扩展与物质贮存上具有一定的可调节性。  相似文献   

16.
Because of the modular structure of pearl millet (an annual grass crop, Poaceae), different tillers of a plant share the same genotype but are subjected to different environmental conditions during their maturation. This allows investigation of the effects of tiller flowering phenology on allocation to resource-producing photosynthetic biomass, sexual functions, and thus tiller gender. All tillers of plants of two families collected from individual maternal plants (represented by 33 and 31 plants each) were analyzed. In both families, allocation to aboveground vegetative biomass decreased as flowering was delayed. On average, late-flowering tillers were 65% smaller than the first ones to flower. The proportion of biomass allocated to reproduction significantly increased with the flowering rank of the tillers, suggesting that translocations of assimilates occurred between early- and late-flowering tillers. In both families, late-flowering tillers produced significantly fewer pollen grains per stamen than early-flowering ones, and female reproductive allocation (expressed as seed mass per tiller) was also affected by flowering phenology. Tillers became increasingly female as flowering phenology progressed. This gender variation is possibly adaptive because pollination efficiency is maximized by plant height. Natural selection may favor a shift toward femaleness to maximize reproductive fitness in small, late-developing tillers.  相似文献   

17.
《Acta Oecologica》2002,23(2):109-114
Hedysarum laeve, a rhizomatous clonal semi-shrub, commonly dominates the inland dunes in semiarid areas of northern China. This species propagates vegetatively by extension of horizontal woody rhizomes resulting in programmed reiteration of apical and/or axillary meristems. In this study, the plants were experimentally manipulated by cutting rhizome connections and 14C-labelling techniques were employed to investigate the ecological significance of rhizome connections within the H. laeve clone. Severance of rhizome connections had a great effect on the performance of young ramets within a clone. Young ramets severed from their parent ramets experienced a significant reduction both in ramet growth and vegetative propagation, as compared with the intact young ramets. Within clonal fragments, consisting of three interconnected ramets including a mother ramet, a daughter ramet and a granddaughter ramet, 14C-photosynthates from the fed leaves of mother ramets were acropetally transported to all clonal component parts. The 14C-photosynthate translocation within the clonal fragment provides evidence that the young ramets were supported by their parent ramets. Our results suggest that the woody rhizome connections among the interconnected ramets are ecologically and strategically important for the species to grow in the sand dune habitat.  相似文献   

18.
无芒雀麦是浑善达克沙地植物群落中占优势的多年生根茎禾草.研究了克隆整合特性对无芒雀麦在异质性盐分环境中存活和生长的影响.结果表明,克隆整合显著提高了无芒雀麦分株在高盐环境中的存活能力,耗-益分析表明无芒雀麦在高盐斑块中分株的生物量、分株数、根茎节数和根茎总长显著受益于克隆整合,而与之相连的非盐分斑块中的分株却没有产生显著的损耗.因而,克隆整合特性是无芒雀麦对异质性环境形成的重要适应对策,它使无芒雀麦能够扩展到不适合植物生长的高盐分斑块中,从而增加了无芒雀麦在浑善达克沙地中的存活和生长,提高了其在半干旱沙化地区的适合度.  相似文献   

19.
HUME  D.E. 《Annals of botany》1991,67(2):111-121
A detailed morphological study of three prairie grass cultivars(Bromus willdenowii Kunth) was conducted under ‘vegetative’and ‘reproductive’ growth conditions (short andlong photoperiods) and at different temperatures. Perennialryegrass (Lolium perenne L.) and Westerwolds ryegrass (Loliummuhiflorum Lam.) were compared during vegetative growth. Prairie grass had higher leaf appearance rates (leaves per tillerper day) and lower site filling (tillers per tiller per leafappearance interval) than the ryegrass species. Tillering rates(tillers per tiller per day) were also lower, except under vegetativeconditions at 4C. Low tiller number in prairie grass was notdue to lack of tiller sites but a result of poor filling ofthese sites. Lower site filling occurred because of increaseddelays in appearance of the youngest axillary tiller and lackof axillary tillers emerging from basal tiller buds. In prairiegrass, no tillers came from coleoptile buds while only occasionallydid prophyll buds develop tillers. Low tiller number in prairiegrass was compensated for by greater tiller weight. Prairiegrass had more live leaves per tiller, greater area per leafand a high leaf area per plant. Considerable variation between cultivars was found in prairiegrass. The cultivar ‘Bellegarde’ had high leaf appearance,large leaves and rapid reproductive development, but had lowlevels of site filling, tillering rate, final tiller numberand herbage quality during reproductive growth. ‘Primabel’tended to have the opposite levels for these parameters, while‘Grasslands Matua’ was intermediate and possiblyprovided the best balance of all plant parameters. prairie grass, Bromus willdenowii Kunth, perennial ryegrass, Lolium perenne L., Westerwolds ryegrass, Lolium multiflorum Lam., temperature, photoperiod, leaf appearance, leaf area, tillering, site filling, tillering sites, yield  相似文献   

20.
The relative growth rate of the shoot system of Lolium perenne may be considered as being made up of two components, the relative growth rate of the increase in the number of tillers and the relative growth rate of the mean tiller. These three relative growth rates were calculated for twenty-two clones of Lolium perenne growing in twenty-eight environments. Analyses of variance showed that differences in the environment were responsible for a greater amount of variation than either differences between clones or the interaction between clonal and environmental influences.
For each clone it was possible to calculate relationships between the relative growth rate of the shoot and its two components as they varied with the environments. The relationships held irrespective of the environmental factor(s) which altered to cause the difference in relative growth rates. In all clones an increase in the relative growth rate of the shoot was found to be due to an increase in the relative growth rates of both components. In seventeen clones the relationship between the increments of the two components was constant. In five of the clones an increase in the relative growth rate of the shoot at low values was due more to an increase in the relative growth rate of the number of tillers than to an increase in the relative growth rate of the mean tiller. At high values the opposite occurred.
These results are discussed in relation to the theory of 'nutritive diversion' and in relation to the proportion of lateral buds which produce tillers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号